Keras classifier分类(二)

导入的lib:

import numpy as np  
from keras.datasets import mnist  #数据包
from keras.utils import np_utils  #np帮助类
from keras.models import Sequential #按顺序建立 模型
from keras.layers import Dense,Activation #Dense 全连接层 ; Activation 激活函数层
from keras.optimizers import RMSprop # 优化器 --其中一个 RMSprop

下载数据并读取: 

#下载到  ./anaconda3/lib/python3.6/site-packages/keras/datasets #我的python环境是 基于 anaconda3 
#下载 失败可以 自己下载搬到 目录中去
#X shape(60000,28,28),y shape(10000,)
(X_train,Y_train),(X_test,Y_test)=mnist.load_data()

#数据预处理

x_train=X_train.reshape(X_train.shape[0],-1)/255 # 除以255  让数据 特征标准化 让 数值在 [0~255] 之间
x_test=X_test.reshape(X_test.shape[0],-1)/255 #normalize
y_train=np_utils.to_categorical(Y_train,num_classes=10) #np.utils.to_categorical : 若 y=2 -> [[ 0.  0.  1.  0.  0.  0.  0.  0.  0.  0.]]
y_test=np_utils.to_categorical(Y_test,num_classes=10)


#建模

model=Sequential([
    Dense(32,input_dim=784), #784=28*28
    Activation('relu'),
    Dense(10),
    Activation('softmax'), 
])

#自定义 或 创建 优化器

rmsprop=RMSprop(lr=0.001,rho=0.9,epsilon=1e-08,decay=0.0)
#lr 学习率 ,decay 衰减率

#搭建模型

model.compile(optimizer=rmsprop,loss='categorical_crossentropy',metrics=['accuracy']) #指标列表

#训练

model.fit(x_train,y_train,epochs=2,batch_size=32) #epochs 训练几回 batch_size 每批训练的数量

#评价

loss,accuracy=model.evaluate(x_test,y_test) #metrics 里面有 accuracy
print(loss)
print(accuracy)




下面是一个使用Keras编写的Transformer分类器的示例代码: ```python import tensorflow as tf from tensorflow.keras.layers import Input, Dense, Dropout from tensorflow.keras.layers import LayerNormalization, MultiHeadAttention from tensorflow.keras.layers import Embedding, Flatten from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam def positional_encoding(seq_length, d_model): pos = tf.range(seq_length)[:, tf.newaxis] i = tf.range(d_model)[tf.newaxis, :] angle_rates = 1 / tf.pow(10000.0, (2 * (i // 2)) / tf.cast(d_model, tf.float32)) angle_rads = pos * angle_rates sines = tf.math.sin(angle_rads[:, 0::2]) cosines = tf.math.cos(angle_rads[:, 1::2]) pos_encoding = tf.concat([sines, cosines], axis=-1) return tf.cast(pos_encoding, tf.float32) def create_padding_mask(seq): seq = tf.cast(tf.math.equal(seq, 0), tf.float32) return seq[:, tf.newaxis, tf.newaxis, :] def create_look_ahead_mask(size): mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0) return mask def scaled_dot_product_attention(q, k, v, mask): matmul_qk = tf.matmul(q, k, transpose_b=True) dk = tf.cast(tf.shape(k)[-1], tf.float32) scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) if mask is not None: scaled_attention_logits += (mask * -1e9) attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) output = tf.matmul(attention_weights, v) return output class EncoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, rate=0.1): super(EncoderLayer, self).__init__() self.mha = MultiHeadAttention(d_model, num_heads) self.ffn = tf.keras.Sequential([ Dense(dff, activation='relu'), Dense(d_model) ]) self.layernorm1 = LayerNormalization(epsilon=1e-6) self.layernorm2 = LayerNormalization(epsilon=1e-6) self.dropout1 = Dropout(rate) self.dropout2 = Dropout(rate) def call(self, x, training, mask): attn_output = self.mha(x, x, x, mask) attn_output = self.dropout1(attn_output, training=training) out1 = self.layernorm1(x + attn_output) ffn_output = self.ffn(out1) ffn_output = self.dropout2(ffn_output, training=training) out2 = self.layernorm2(out1 + ffn_output) return out2 class TransformerEncoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, maximum_position_encoding, rate=0.1): super(TransformerEncoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = Embedding(input_vocab_size, d_model) self.pos_encoding = positional_encoding(maximum_position_encoding, d_model) self.dropout = Dropout(rate) self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)] def call(self, x, training, mask): seq_len = tf.shape(x)[1] x = self.embedding(x) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x += self.pos_encoding[:, :seq_len, :] x = self.dropout(x, training=training) for i in range(self.num_layers): x = self.enc_layers[i](x, training, mask) return x def transformer_classifier(num_layers, d_model, num_heads, dff, input_vocab_size, maximum_position_encoding, num_classes, rate=0.1): inputs = Input(shape=(None,)) padding_mask = Lambda(create_padding_mask)(inputs) transformer_encoder = TransformerEncoder(num_layers, d_model, num_heads, dff, input_vocab_size, maximum_position_encoding, rate) x = transformer_encoder(inputs, True, padding_mask) x = Flatten()(x) x = Dense(num_classes, activation='softmax')(x) return Model(inputs=inputs, outputs=x) model = transformer_classifier(num_layers=4, d_model=128, num_heads=8, dff=512, input_vocab_size=10000, maximum_position_encoding=1000, num_classes=10) optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.98, epsilon=1e-9) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) ``` 这段代码实现了一个Transformer编码器,用于从变长的文本序列中提取特征,然后将这些特征输入到一个全连接层中进行分类。在这个示例中,我们定义了一个包含4个编码器层的Transformer,每个编码器层包含8个注意力头和一个前馈网络。我们还使用了位置编码、嵌入层和遮挡层来处理变长的文本序列。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_yuki_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值