深度学习入门-感知机

深度学习入门-感知机

1、感知机是什么

感知机接收多个输入信号,输出一个信号。

image-20220612093727735

2、感知机实现与门

def AND(x1, x2):
	w1, w2, theta = 0.5, 0.5, 0.7
    tmp = x1*w1 + x2*w2
	if tmp <= theta:
		return 0
	elif tmp > theta:
		return 1

3、导入权重和偏置

​ 将2.1公式中的 θ 换成−b得到如下的公式来表示感知机,b称为偏置(偏置是调 整神经元被激活的容易程度(输出信号为1的程度)的参数),w1和w2称为权重。

image-20220612094540114

​ 使用权重和偏置实现与门

def AND(x1, x2):
	x = np.array([x1, x2])
	w = np.array([0.5, 0.5])
	b = -0.7
	tmp = np.sum(w*x) + b
	if tmp <= 0:
		return 0
	else:
		return 1

4、感知机的局限性与多重感知机

​ 感知机虽然可以实现与门、或门、非门三种逻辑电路哦,但是无法直接表示异或门。要表示异或门,需要引入多层感知机(叠加了多 层的感知机也称为多层感知机)。感知机通过叠加层可以进行非线性表示。

image-20220612095413223

异或门的代码实现

def XOR(x1, x2):
	s1 = NAND(x1, x2)
    s2 = OR(x1, x2)
	y = AND(s1, s2)
	return y

5、小结

image-20220612095739889

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值