WebWalker:阿里巴巴推出评估LLMs在网页浏览任务中性能的基准工具

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:WebWalker通过多智能体框架和垂直探索策略,帮助模型处理长上下文信息。
  2. 数据集:提供WebWalkerQA数据集,包含680个多语言、多领域的查询,用于测试模型性能。
  3. 应用:适用于智能信息检索、多源信息整合、数据收集与分析等场景。

正文(附运行示例)

WebWalker 是什么

webwalker-overall

WebWalker是阿里巴巴自然语言处理团队开发的工具,旨在评估和提升大型语言模型(LLMs)在网页浏览任务中的性能。通过模拟网页导航任务,WebWalker帮助模型更好地处理长上下文信息,提升其在复杂网页浏览任务中的表现。

WebWalker的核心功能包括多智能体框架、垂直探索策略以及WebWalkerQA数据集。这些功能使得WebWalker能够有效管理内存、深入探索网页内容,并通过数据集测试模型的性能。

WebWalker 的主要功能

  • 多智能体框架:支持模型在浏览网页时保持对之前交互的记忆,更好地处理需要长上下文信息的任务。
  • 垂直探索:深入探索单个页面或相关页面链,寻找和回答问题所需的信息。
  • WebWalkerQA 数据集:包含680个具有挑战性的查询,覆盖多语言和多领域的网页内容,用于测试模型的性能。
  • 性能评估:通过HuggingFace的Leaderboard提交和比较不同方法的性能。

如何运行 WebWalker

1. 环境配置

首先,确保你已经安装了Python 3.10,并创建了一个虚拟环境:

conda create -n webwalker python=3.10
git clone https://github.com/alibaba-nlp/WebWalker.git
cd WebWalker
pip install -e .
pip install -r requirements.txt
crawl4ai-setup
crawl4ai-doctor
2. 运行本地演示

在运行之前,请设置你的API密钥:

export OPEN_AI_API_KEY=YOUR_API_KEY
export OPEN_AI_API_BASE_URL=YOUR_API_BASE_URL

或者使用Dashscope API密钥:

export DASHSCOPE_API_KEY=YOUR_API_KEY

然后,运行app.py文件:

cd src
streamlit run app.py
3. 运行RAG系统

你可以通过以下命令运行RAG系统:

cd src
python rag_system.py --api_name [API_NAME] --output_file [OUTPUT_PATH]

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值