R1-Onevision:开源多模态推理之王!复杂视觉难题一键解析,超越GPT-4V

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🎧 “视觉推理新突破!R1-Onevision 开源多模态模型,超越 GPT-4V 的推理能力”

大家好,我是蚝油菜花。你是否也遇到过——

  • 👉 面对复杂的科学问题,难以快速找到解决方案?
  • 👉 需要分析大量图像数据,但缺乏高效的工具?
  • 👉 在教育场景中,如何帮助学生更好地理解复杂的逻辑推理?

今天要介绍的 R1-Onevision,是一款开源的多模态视觉推理模型,基于 Qwen2.5-VL 微调而成。它不仅能同时处理图像和文本输入,还能在数学、科学、深度图像理解和逻辑推理等领域表现出色。在多项基准测试中,R1-Onevision 甚至超越了 Qwen2.5-VL-7B 和 GPT-4V 等模型。

🚀 快速阅读

R1-Onevision 是一款开源的多模态视觉推理模型,专注于复杂视觉推理任务。

  1. 核心功能:通过整合视觉和文本数据,R1-Onevision 能够在数学、科学、深度图像理解和逻辑推理等领域表现出色。
  2. 技术原理:基于 Qwen2.5-VL 微调,采用形式化语言驱动的推理和基于规则的强化学习技术,提升了模型的推理准确性和可解释性。

R1-Onevision 是什么

R1-onevision-demo

R1-Onevision 是一款开源的多模态大语言模型,专注于复杂视觉推理任务。它基于 Qwen2.5-VL 微调而成,通过整合视觉和文本数据,能够精准地进行多模态信息解释。在数学、科学、深度图像理解和逻辑推理等领域表现出色,并在多项推理基准测试中超越了 Qwen2.5-VL-7B 和 GPT-4V 等模型。

R1-Onevision 能同时处理图像和文本输入,通过先进的 embedding 技术实现高效的信息提取与关联。训练数据集涵盖了自然场景、科学、数学问题、OCR 内容和复杂图表等多个领域,进一步提升了模型的推理能力。

R1-Onevision 的主要功能

  • 多模态融合与推理:R1-Onevision 能同时处理图像和文本输入,通过先进的 embedding 技术实现视觉与语言信息的高效整合,在数学、科学、深度图像理解和逻辑推理等领域表现出色。
  • 复杂推理能力:模型通过形式语言和规则强化学习,具有深度推理能力,能在高难度的推理任务中提供精准答案。
  • 多样化应用场景:R1-Onevision 可广泛应用于科学研究、教育工具、图像理解以及工业领域。可以帮助科学家分析复杂数据集,为学生提供精准指导,或用于医疗影像分析和自动驾驶等场景。
  • 基准测试与数据集支持:R1-Onevision 团队开发了 R1-Onevision-Bench 基准测试,涵盖逻辑推理、数学、物理和化学问题,用于评估模型在不同领域的推理能力。
  • 自监督学习与优化:R1-Onevision 通过群组相对策略优化(GRPO)进行强化学习自我探索,减少了对大量标注数据的依赖,提升了学习速度和泛化能力。

R1-Onevision 的技术原理

  • 形式化语言驱动的推理:模型引入了形式化语言(Formal Language)来表达图像内容,推理过程更加精确和可解释。提升了推理的准确性,使模型的推理过程更加透明,便于理解和验证。
  • 基于规则的强化学习:R1-Onevision 在训练过程中采用了基于规则的强化学习(Rule-Based Reinforcement Learning, RL),通过明确的逻辑约束和结构化输出,确保模型在推理过程中遵循逻辑推导的原则。
  • 精心设计的数据集:R1-Onevision 的数据集通过密集标注技术捕捉图像的细节信息,结合语言模型的推理能力生成更具逻辑性的文本描述。
  • 强化学习优化:R1-Onevision 借鉴了 DeepSeek 的 GRPO(Generative Reward Processing Optimization)强化学习技术,通过自监督学习和优化,减少了对大量标注数据的依赖。
  • 模型架构与训练:R1-Onevision 基于 Qwen2.5-VL 微调而成,采用全模型监督微调(Full Model SFT)方法,训练过程中使用了 512 分辨率的图像输入以节省 GPU 内存。模型通过优化学习率和梯度累积等技术,进一步提升了训练效率。

如何运行 R1-Onevision

1. 安装依赖

首先,确保你已经安装了 transformers 库和 torch。可以通过以下命令安装:

pip install transformers torch

2. 加载模型

你可以使用 Hugging Face 的 transformers 库加载 R1-Onevision 模型:

from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
import torch
from qwen_vl_utils import process_vision_info

MODEL_ID = "Fancy-MLLM/R1-Onevision-7B"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16
).to("cuda").eval()

3. 准备输入

准备图像和文本输入:

messages = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": "<your image path>"},
            {"type": "text", "text": "Hint: Please answer the question and provide the final answer at the end. Question: Which number do you have to write in the last daisy?"},
        ],
    }
]

4. 推理

进行推理并输出结果:

text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to(model.device)

generated_ids = model.generate(**inputs, max_new_tokens=4096)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

<think>嗯,用户问的是关于el-tree懒加载和回显展开某个节点的内容。首先,我需要确认用户是否在使用Element UI的树形组件,因为el-treeElement UI的一部分。懒加载通常用于处理大数据量的树结构,当节点展开时才加载子节点,这样可以优化性能。 用户提到“回显展开某个节点”,可能是在编辑或查看时,需要展开之前选中的节点,比如在表单回填时展开特定的节点。这时候可能需要先加载该节点的路径,确保父节点都已展开,目标节点可见。 首先,我需要解释懒加载的基本用法,包括load属性和node-expand事件。然后,针对回显展开的需求,可能需要使用到setCheckedNodes或者setCheckedKeys方法,但要注意懒加载的节点是否已经加载。如果节点未加载,可能需要先手动加载父节点,再展开。 接下来,用户可能需要具体的步骤或示例代码。比如,当需要展开某个节点时,可能需要递归检查父节点是否已加载,如果没有,则触发load方法加载数据,然后展开。这个过程可能需要使用到树的updateKeyChildren方法或者操作node的expanded属性。 另外,需要注意异步加载的问题,可能需要使用Promise或者async/await来处理加载顺序,确保父节点加载完成后再展开子节点。同时,要处理可能出现的节点重复加载或未正确展开的情况。 最后,总结一下步骤:懒加载配置,存储节点信息,递归加载父节点,展开目标节点,并提供一个代码示例来演示如何实现。可能还需要提醒用户注意节点数据的唯一标识和正确更新树的状态。</think>在 Element UI 的树形组件 `el-tree` 中,**懒加载**和**节点回显展开**是处理大型树结构的常见需求。以下是一个简洁清晰的实现思路和示例: --- ### 一、懒加载基础用法 **作用**:延迟加载子节点数据,优化性能 **核心属性**: ```vue <el-tree :props="props" :load="loadNode" lazy show-checkbox node-key="id" ></el-tree> ``` ```javascript data() { return { props: { label: 'name', isLeaf: 'isLeaf' } } }, methods: { async loadNode(node, resolve) { if (node.level === 0) { // 加载根节点 resolve(await fetchRootNodes()); } else { // 根据当前节点 ID 获取子节点 const children = await fetchChildNodes(node.data.id); resolve(children); } } } ``` --- ### 二、回显并展开指定节点 **场景**:编辑时需展开特定路径(如 `/父节点/子节点/目标节点`) #### 实现步骤: 1. **存储节点路径** 保存目标节点的层级 ID 路径(如 `[rootId, parentId, targetId]`) 2. **递归展开父节点** ```javascript async expandPath(path) { let currentNode = this.$refs.tree.getNode(path[0]); for (const id of path.slice(1)) { if (!currentNode.expanded) { await this.loadChildren(currentNode); // 触发懒加载 this.$refs.tree.store.setExpanded(currentNode, true); } currentNode = currentNode.childNodes.find(c => c.data.id === id); } // 滚动到目标节点 this.$nextTick(() => { const targetNode = document.querySelector(`[data-node-id='${targetId}']`); targetNode?.scrollIntoView(); }); } ``` 3. **加载子节点逻辑** ```javascript loadChildren(node) { return new Promise(resolve => { this.loadNode(node, (children) => { node.updateChildren(children); resolve(); }); }); } ``` --- ### 三、关键注意事项 1. **节点标识**:确保 `node-key` 使用唯一值(通常为 ID) 2. **数据一致性**:回显前确保节点数据已正确加载 3. **异步处理**:使用 `async/await` 保证展开顺序 4. **性能优化**:对已加载的节点跳过重复请求 --- 通过这种方式,可以高效实现懒加载树结构的节点动态加载和精准定位展开,适用于权限管理、文件目录等需要动态加载数据的场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值