四、并非盈数之和
完全数是指真因数之和等于自身的那些数。例如,28的真因数之和为1 + 2 + 4 + 7 + 14 = 28,因此28是一个完全数。
一个数n被称为亏数,如果它的真因数之和小于n;反之则被称为盈数。
由于12是最小的盈数,它的真因数之和为1 + 2 + 3 + 4 + 6 = 16,所以最小的能够表示成两个盈数之和的数是24。通过数学分析可以得出,所有大于28123的数都可以被写成两个盈数的和;尽管我们知道最大的不能被写成两个盈数的和的数要小于这个值,但这是通过分析所能得到的最好上界。
找出所有不能被写成两个盈数之和的正整数,并求它们的和。
public static void main( String[] args )
{
System.out.println(nonAbundantSums());
}
public static int nonAbundantSums() {
int sum =0;
ArrayList<Integer> list = new ArrayList<>();
for (int i = 1; i <= 28123; i++) {
if (Abundant(i)) {
list.add(i);
}
}
for (int i = 0; i <=28123; i++) {
boolean abundant = false;
int k=0;
int j=list.size()-1;
while (k <= j) {
int value = list.get(k)+list.get(j);
if (i > value) {
k++;
} else if (i < value) {
j--;
} else {
abundant =true;
break;
}
}
if (!abundant) {
sum+=i;
}
}
return sum;
}
public static boolean Abundant(int num){
int sum =0;
for (int i = 1; i <= num >> 1; i++) {
if (num % i == 0) {
sum+=i;
}
}
return sum>num;
}
分析:
先把1到28123之间的盈数存储在list中,然后在逐个判断,其实list中的盈数相当于已经按照从小到大排序好的,下面的while循环和二分法查找有一点点类似的地方。如果不能表示就加到sum中,最后返回。