制造业是我国的支柱产业。2020年,我国工业产业GDP达31.3亿元,占全国经济总量的30.8%,其中制造业贡献26.59亿元,占全国经济总量的26.2%。伴随着工业4.0、物联网、数字孪生、大数据等信息技术的高速发展,生产要求速率更高、产品要求质量更细、生产弹性更优的智能制造得到强劲发展。其中,数字化工厂就是工业4.0的核心,是智能制造的基础。通过数字化将数据转变为信息,通过网络化和智能化的决策,创造更大的价值。智能制造被列为了国家“十四五”期间制造业信息化发展的方向。
智能制造全域数据分析方案包括:
1、 制造实时数据接入
2、 数据加工和处理
3、 数据大屏
4、 电视可视化大屏
https://gcdn.grapecity.com.cn/showforum-202-1.html
一、 制造实时数据接入
在制造业中生产数据要实现智能商业分析,那么最大的关注点就是数据如何接入。如果我们对制造业有所了解,那么庞大的数据量使我们对工业大数据层面会有一个更加深入的认识。在这个领域,数据是制造行业的一个宝库,对于未来的智能制造发展而言,工业大数据的采集,存储和应用是实现商业智能最快捷的捷径。
通常,我们如果要打造一个智能制造企业,则需要引入一系列的信息化系统,其中最典型的就是PLM(产品生命周期管理系统);PDM(产品数据管理系统),QMS(产品质量管理系统)等多个系统,这还仅仅只是应用系统数据;而在正式成产环境中,我们所面临的设备检测数据,生产检测数据,以及生产过程中的每个环节的监测点数据。那么如何实现海量数据对接呢?
在实际生产中,根据不通的数据存储类型,我们可以将按照不同的数据源类型来区分,如:关系型数据库,nosql,文件型数据,网络数据源,流数据等等不同类型的数据。为了完善智能制造商业智能的能力,则需要接入目前各类生产环境中的数据。
今天,我们来一起学习一下在智能制造行业,数据对接的集中典型方式。就从目前比较实用的几种对接方式:
1.数据源对接
2.JSON直连
3.流式数据集
4.推送数据集
JSON直连
此功能,可以在使用中直接链接api数据源,在使用过程中实时调用,返回最新接口数据。基于http请求,在wyn enterprise中数据连接不再基于数据库,在业务逻辑处理中,我们更可以在接口端处理完成,减轻了服务处理数据的压力;如果目前项目使用的是前后端分离,那么在使用wyn enterprise来做集成时,可以直接调用业务api;减少配置数据集的工作量。部分业务系统数据库不会第三方项目开发,此类系统,则只能用接口的方式来完成业务对接。
流式数据集,推送数据集
通过使用wyn enterprise,可以轻松实现流式数