声明:这篇文章为翻译文章,如有翻译不准之处请见谅。原文请参照:Top 10 MLOps Tools for 2025 - DEV CommunityWith the rapid growth of AI, MLOps tools are becoming a must-use for research and development teams.... Tagged with machinelearning, devops, mlops.https://dev.to/yayabobi/top-10-mlops-tools-for-2025-43g2随着人工智能的快速发展,MLOps 工具正成为研发团队的必备工具。这些工具简化了机器学习模型的开发、部署和管理,使复杂的流程更易于管理。
对 ML 支持的需求巨大。2023 年, 86% 的组织 需要帮助从其机器学习 (ML) 投资中创造商业价值。因此,MLOps 工具通过自动执行重复性任务、确保可重复性并让团队专注于创新来解决这些问题。
一、什么是 MLOps 工具?
MLOps 代表机器学习操作,是一套将机器学习融入软件和数据工程的实践。 它涉及使用流程和工具来自动化开发和部署,并在生产中大规模维护机器学习模型。
MLOps 工具专为支持与机器学习相关的最佳实践而设计。它们专注于模型版本控制、自动化数据管道、监控模型以及进行自动化测试和验证等任务。
这些工具可帮助数据科学家和软件工程师管理机器学习模型的整个生命周期,包括训练和监控,确保模型在生产中始终如一、可靠地运行。
二、MLOps 工具的类型
- 模型版本控制工具: 允许用户一致地管理和比较模型版本以重现结果。例如,DVC 和 MLflow 等工具有助于对机器学习模型和数据集进行版本控制。
- 管道编排工具: 包括数据预处理、模型训练、评估和部署。例如,Kubeflow 和 Apache Airflow 等工具可自动执行机器学习过程中的不同步骤。
- 监控和管理工具:监控准确性、延迟和资源利用率 等指标 ,并可检测异常和性能下降。
- 部署工具: 支持各种部署策略,确保安全高效地推出新模型。TensorFlow Serving 和 AWS SageMaker 等工具简化了机器学习模型的生产部署。
MLOps 工具的优势
- 改善协作: 促进数据科学家、机器学习工程师和运营团队之间更好的协作,从而实现更高效的团队合作。
- 增强的自动化:自动执行数据预处理、模型训练和部署等任务,从而腾出时间进行更高级的工作并确保更一致、更可靠的流程。
- 提高可扩展性: 简化扩展机器学习操作并处理增加的数据量以及跨各种环境的部署,而不会影响性能或可靠性。
- 有效的模型管理: 通过版本控制、监控和日志记录简化机器学习模型的生命周期管理。
- 更快的上市时间: 自动将模型部署到生产中,使团队能够通过快速向市场提供解决方案来获得竞争优势。
三、MLOps 工具中需要寻找的关键功能
- 自动化和编排: MLOps 工具应优先自动化和编排数据预处理、模型训练和部署任务。
- 可扩展性:MLOps 工具应该能够随着数据集大小和计算需求的增长而扩展。此功能确保工具能够处理不断增加的模型大小和复杂的操作,而不会降低性能和可靠性。
- 监控和日志记录: 监控和日志记录对于运行任何模型都至关重要,因为它们允许实时性能跟踪和问题识别。
- 无缝集成: MLOps 工具的一个重要方面是它们能够与现有工具和平台无缝集成,以确保工作流程顺畅。支持知名的数据科学和 DevOps 工具 对于轻松集成和最大限度地减少对现有工作流程的干扰至关重要。
四、2024 年十大 MLOps 工具
1.ModelBit
ModelBit 是一个机器学习工程平台,内置 MLOps 工具,可简化机器学习模型的部署和管理。
主要特点:
- 实时监控和警报。
- 自动化版本控制和回滚。
- 轻松与流行的数据科学工具集成。
最适合:
寻求快速可靠的模型部署的初创公司和小团队。
价格:
定价根据工作量和持续时间而有所不同。提供 25 美元的免费信用额度。
评论: “支持自定义环境、包和测试。还可以从笔记本或 Git 运行训练作业。包括日志、监控和版本控制。”
2. Control Plane
虽然 Control Plane 不是直接的 MLOps 平台,但它提供的功能和能力在 MLOps 环境中高度相关且有益。例如,Kubernetes 是编排和扩展机器学习工作负载的热门选择。Control Plane 在 Kubernetes 工作负载方面的专业知识 可以帮助 MLOps 团队在云原生环境中有效地部署、管理和扩展他们的 ML 模型和管道。
主要特点:
- 使用 Capacity AI 技术 根据需求自动扩展应用程序来优化云成本和资源使用情况。
- 提供强大的协作工具,实现与 CI/CD 管道的无缝集成。
- Universal Cloud Identity™ 技术允许工作负载跨任意组合的云提供商或本地基础设施运行。
- 支持无服务器模式,不使用时自动缩放至零,按毫核和兆字节内存计费。
最适合:
团队使用 Kubernetes 来协调和扩展 ML 工作负载。
价格:
根据您的使用情况制定清晰、简单的定价,因此您永远不会过度配置。如果您有 Kubernetes 集群,请尝试免费的 K8s 成本计算器, 以了解在控制平面平台上运行工作负载与在云提供商上运行工作负载相比节省的成本。
评论: “借助控制平面,我们掌握了多云管理,微调了 Kubernetes 效率,并大幅节省了成本。”
3. Pachyderm
Pachyderm 是一种具有数据版本控制和端到端管道的 MLOps 解决方案。它专注于机器学习工作流程的可重复性和可扩展性。
主要特点:
- 数据版本控制和沿袭追踪。
- 可扩展的数据管道。
- 用于数据科学的类似 Git 的操作。
最适合:
需要强大数据版本控制和可重复性的组织。
价格:
提供免费套餐,定价以询价为准。
评论: “在测试新的转换管道时能够保留数据集的分支。”
4. Dagster
Dagster 是一个用于开发、部署和管理数据管道的编排平台,支持可靠且可维护的机器学习 工作流程。
主要特点:
- 与 Airbyte、Snowflake 和 Slack 等流行的数据工具集成。
- 内置数据资产管理。
- 灵活且可扩展的设计。
最适合:
团队需要协调和管理复杂的 ML 工作流程并构建数据管道。
价格:
提供三种套餐:Solo、Starter 和 Pro,起价 10 美元。
评论: “Dagster 被设计为云原生编排器,以简化数据资产的开发、生产和观察。”
5.Kubeflow Pipelines
Kubeflow Pipelines 是一个用于部署、编排和管理 安全 Kubernetes ML 工作流的平台。
主要特点:
- 机器学习工作流的端到端编排。
- 可重复使用的管道组件。
- 为 ML 生命周期的每个阶段提供工具,包括管道和模型训练。
最适合:
Kubernetes 用户正在寻找全面的 MLOps 解决方案。
价格:
开源(免费)。
评论: “Kubeflow 的一体化功能使团队易于使用,并节省了大量时间。这对于新学习者来说很容易使用。”
6. MLflow
MLflow 是一个开源平台,用于管理端到端 ML 生命周期,包括实验、可重复性和部署。它包括用于跟踪和共享模型的工具。
主要特点:
- 实验跟踪和管理。
- 模型注册和部署。
- 与流行的 ML 库集成。
最适合:
需要实验跟踪和模型生命周期管理的团队。
价格:
开源(免费)。
评论: “MLflow 通过简单的设置和直观的界面帮助简化整个 ML 生命周期,使团队能够重现结果并轻松协作。”
7. Comet ML
Comet ML 是一个可定制的平台,用于跟踪、比较和优化机器学习模型。它通过其开放 API 与 PyTorch、XGBoost 等流行框架集成。
主要特点:
- 实验管理、跟踪和可视化。
- 团队协作工具。
- 模型生产监控。
最适合:
数据科学团队正在寻求先进的实验跟踪。
价格:
提供免费计划。付费计划起价为每月 50 美元。
评论: “我需要一个可以帮助我跟踪实验的工具。我得到了一整套非常适合我的 ML 研究的工具。”
8. LakeFS
LakeFS 是一个开源数据版本控制工具,可以将您的对象存储转换为类似 Git 的存储库。
主要特点:
- 类似 Git 的数据湖版本控制。
- 与现有数据工具无缝集成。
- 可扩展且高效的数据管理。
最适合:
从事 MLOps 项目工作的团队需要管理大型数据湖并进行版本控制。
价格:
开源。
评论:“LakeFS 有助于将数据转换为可用且可行形式。可以轻松查看数据快照,而不会被所有内容淹没。”
9.DVC
DVC 是机器学习项目的版本控制系统。它与 Git 集成,可管理数据集、跟踪实验并有效重现结果,使团队能够简化实验跟踪等任务。
主要特点:
- 数据版本控制和管理。
- 实验跟踪和可重复性。
- 与 Git 集成。
最适合:
开发人员正在寻找轻量级的数据版本控制解决方案。
价格:
开源(免费)。
评论: “DVC 让我能够概览我的结果,包括图表和跟踪元数据。这改善并加快了研究过程,实现了结果的可重复性并改善了团队合作。”
10.Databricks
Databricks 是一个结合数据工程、数据科学和机器学习的统一分析平台。它为 MLOps 团队提供协作工具和可扩展的云基础架构。
主要特点:
- 统一数据分析和机器学习平台
- 协作笔记本
- 可扩展并针对大数据进行优化
最适合:
需要统一的数据和机器学习平台的组织。
五、利用控制平面最大程度发挥 MLOps 潜力
选择正确的 MLOps 工具可以显著改善您的机器学习工作流程。其中一个突出的工具是 Control Plane。凭借其强大的功能和无缝集成能力,Control Plane 为在云原生环境中部署、管理和扩展您的 ML 模型提供了宝贵的支持。
借助 Control Plane,您可以使用 Universal Cloud Identity™ 技术在任意组合的云提供商和本地基础设施上运行工作负载。轻松混合 AWS、GCP 和 Azure 的服务,然后利用 Capacity AI 自动扩展成本,这样您只需支付所需的费用。享受以 99.999% 的可用性和超低延迟自由运行工作负载。