【Python机器学习】零基础掌握CalibratedClassifierCV概率校准

本文介绍了如何使用CalibratedClassifierCV进行概率校准,以提高分类模型的可靠性。通过模拟数据和实际案例,展示了在贷款批准预测和电信行业客户流失预测中的应用。CalibratedClassifierCV利用Platt缩放和Isotonic回归,结合sklearn库,对模型进行校准,从而提供更准确的概率预测,帮助决策者做出更可靠的选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有没有想过如何提高分类模型的可靠性?

在现实生活中,许多决策都依赖于分类模型。例如在医疗诊断中,一个模型可能用于预测一个肿瘤是良性还是恶性的。但是这些模型有时会给出不准确的概率估计。

考虑一个场景,医生使用一个模型来预测肿瘤性质。假设有以下模拟数据:

患者ID 年龄 肿瘤大小 细胞不规则性 预测结果(良/恶)
1 45 3.5 7
2 50 2.1 4
3 60 4.0 10
4 35 1.2 2
5 40 3.0 5

问题在于这个模型可能给出的预测概率并不总是可靠的。这就是CalibratedClassifierCV派上用场的地方。

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr数据杨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值