【Python机器学习】零基础掌握SelectKBest特征选择

本文介绍了如何使用SelectKBest算法进行特征选择,以提高模型准确性和效率。通过实例展示了在电商推荐系统和历史战局分析中如何应用此算法,找出影响关键因素。总结了算法的优势和局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

面临数据冗余,如何选取有效特征?

在当今大数据的环境下,企业和个人都面临一个共同的问题:数据冗余。例如,在电子商务领域,有多个特征(如价格、销量、用户评分等)可以用来预测一个商品的热销程度。但是这些特征中哪些才是真正有用的?如何从中筛选出关键的特征来更准确地进行预测?

解决这个问题的一种有效方法是使用特征选择算法,特别是SelectKBest算法。该算法可以从大量特征中选取出K个最重要的特征,从而提高模型的准确性和效率。

以数字识别为例,这是一个多维特征的问题。每个数字由64个像素组成,但并非所有像素都对识别数字有帮助。通过使用SelectKBest与卡方检验(chi2),可以从64个像素中选出20个最有用的像素。

原特征维度 新特征维度
64 20

会发现原始的64个特征被缩减为20个,这大大提高了模型运行的效率,同时也可能提高模型的准确度。

SelectKBest

SelectKBest是一种特征选择方法,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr数据杨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值