Xgboost算法参数调优详解

本文深入探讨了XGBoost的优势,如正则化、并行处理和高度灵活性,并详细介绍了其参数调优,包括通用参数、booster参数和学习目标参数。通过调参示例展示了如何逐步优化学习率、max_depth、min_child_weight等关键参数,以提高模型性能。
摘要由CSDN通过智能技术生成

1. 简介

        这篇文章最适合刚接触XGboost的朋友。在这篇文章中,我们会学到参数调优的技巧,以及XGboost相关的知识。XGBoost算法现在已经成为很多数据工程师的重要武器。它是一种十分精致的算法,可以处理各种不规则的数据。故掌握好该算法模型的参数调优就显得尤为重要。

        XGBoost(eXtreme Gradient Boosting)是Gradient Boosting算法的一个优化的版本。

2. 内容目录

        ①XGBoost的优势 
        ②理解XGBoost的参数 
        ③调参示例

3. XGBoost的优势

        XGBoost算法可以给预测模型带来能力的提升。该模型相对于其它算法模型,表现出来的优势有:

3.1 正则化

  • 标准GBM的实现没有像XGBoost这样的正则化步骤。正则化能帮助减少过拟合。XGBoost以“正则化提升(regularized boosting)”技术而闻名。

3.2 并行处理

  • XGBoost可以实现并行处理,相比GBM有了速度的飞跃。
  • 不过,众所周知,Boosting算法是顺序处理的,它怎么可能并行呢?每一课树的构造都依赖于前一棵树,那具体是什么让我们能用多
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

且行且安~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值