1. 简介
这篇文章最适合刚接触XGboost的朋友。在这篇文章中,我们会学到参数调优的技巧,以及XGboost相关的知识。XGBoost算法现在已经成为很多数据工程师的重要武器。它是一种十分精致的算法,可以处理各种不规则的数据。故掌握好该算法模型的参数调优就显得尤为重要。
XGBoost(eXtreme Gradient Boosting)是Gradient Boosting算法的一个优化的版本。
2. 内容目录
①XGBoost的优势
②理解XGBoost的参数
③调参示例
3. XGBoost的优势
XGBoost算法可以给预测模型带来能力的提升。该模型相对于其它算法模型,表现出来的优势有:
3.1 正则化
- 标准GBM的实现没有像XGBoost这样的正则化步骤。正则化能帮助减少过拟合。XGBoost以“正则化提升(regularized boosting)”技术而闻名。
3.2 并行处理
- XGBoost可以实现并行处理,相比GBM有了速度的飞跃。
- 不过,众所周知,Boosting算法是顺序处理的,它怎么可能并行呢?每一课树的构造都依赖于前一棵树,那具体是什么让我们能用多