目录
2.模型评估方法之数据集划分
在机器学习任务中,拿到数据后,我们首先会将原始数据集分为三部分:训练集、验证集和测试集。
训练集用于训练模型,验证集用于模型的参数选择配置,测试集对于模型来说是未知数据,用于评估模型的泛化能力。
在使用机器学习的时候,往往会有;验证集与测试集,他们的作用不同。
区分验证集,与测试集。

本文介绍了模型评估方法,包括数据集的划分、交叉验证和网格搜索。通过训练集、验证集和测试集的划分来评估模型的泛化能力。交叉验证用于减少模型评估误差,而网格搜索用于寻找最佳模型参数。同时,文章讨论了模型评估指标,如分类模型的准确率、召回率、F1分数、ROC曲线和AUC,以及回归模型的MAE、MSE和RMSE。
目录
在机器学习任务中,拿到数据后,我们首先会将原始数据集分为三部分:训练集、验证集和测试集。
训练集用于训练模型,验证集用于模型的参数选择配置,测试集对于模型来说是未知数据,用于评估模型的泛化能力。
在使用机器学习的时候,往往会有;验证集与测试集,他们的作用不同。
区分验证集,与测试集。

3052
3067
2960