EIQ-ABC 分析法在配送中心储位分配中的应用

        配送中心运作效率的高低主要取决于仓储业务流程的作业效率,在配送作业流程中,储位分配的是否合理性成为影响配送运作效率的重要因素。为实现储位的合理分配,提出通过对订单信息的分析,并应用 EIQ-ABC 分析法,以此实现缩短货物的搬运距离,降低搬运时间的目标,并通过案例对其进行分析。

ABC 分类法及 EIQ 分析法

1.1 ABC 分类法

        ABC 分 类 法 其 遵 循 的 原 则 是 “抓 住 重 点 核 心,分 清 主 次 ”。ABC 分类法是对物料进行分类的一种基本常用的方法。它将管理对象按照所占主要特征值累计百分比的多少进行分类,分别为 A 类重要物资,B 类一般重要的物资和 C 类不重要的物资。ABC 分类法是对货物进行有效合理地管理的基础,在仓储管理中,应按照货物的出入库频率来进行分类,实现对重要 A 类的优先特殊安排,方便存取作业,加快货物流通速度,提高仓储作业效率,从而降低仓储成本。

2 EIQ 分析法

        EIQ 分析主要是对订单中货品的品项数 ( EN) 、每张订单的订货数量 ( EQ) 、每个货品的订货数量 ( IQ) 、每种货物的订货次数( IK) 进行分析,通过数据的综合分析,配送中心掌握客户的需求,能够对货物的货位分配做出相应的调整,以便对市场需求做出快速反应,提高服务质量。

I1,I2,I3,……I15 表示客户订单中的货品品项即客户所订购的 15 种商品,1,2,3……16 表示一个月内收到客户的订单数。根据分类存储的策略对其分别进行 IQ - ABC 分析和 IK - ABC 分析。

1)  IQ - ABC 分析:

         根据表 1 作 IQ - ABC 分析图 ,并对其进行分析

        通过订单的 IQ - ABC 分析图,可以发现各个子产品的出库数量存在明显的差异性,可以对其进行 ABC 分类管理。产品 I15、I13、I6、I5、的出货数量累积百分比达到了 57. 56% ,品项数量占品项总数量的 26. 67% ,将其分为 A 类产品; I8、I1、I3、I11、I4、I14 的出货数量累积百分比达到了 33. 02% ,品项数量占品项总数量的 40% ,将其
归为 B 类产品; C 类产品出货数量累积百分比达到了 9. 42% ,品项数量占品项总数量的 33. 33% ,他们分别是 I7、I2、I12、I10、I9。

2)IK - ABC 分析:

        根据表 1 作 IK - ABC 分析柏拉图,并对其进行分析

        从图中可以看到出货频数的分布也是呈现比较明显的阶梯状,通过订单的 IK - ABC 的单品项分析图,依据 ABC 分类法,将其进行 IK - ABC 分类: A 类产品的品项出货频数累计 百 分 比 高 达 59.74% ,品项数量占品项总数量的 40% ,他们分别是 I15、I14、I13、I6、I9、I8,B 类产品的品项出货频数累计百分比为 24. 03% ,品项数量占品项总数量的 26. 67% ,他们分别是 I1、I5、I3、I4; I2、I13、I11、I10、I7 他们的品项出货频数累计百分比为 16. 23% ,品项数量占品项总数量的 33. 33% 。

3)IQ - IK 的交叉分析:

        在以上两种分析的情况下,对 IQ 和IK 进行交叉分析,根据图表 1 作 IQ - IK 交叉分析图,并对其进行分析:

        从图形中可以看出,一般出货量大的出货频数一般也较大,所以 IQ - IK 交叉分析表得到的结果更偏向于 IQ - ABC 分析的结果,因此,根据 IQ - IK 分析,分类结果如表所示

根据 EIQ - ABC 分析将货品进行分类,A 类出库频率高且出货量大应存放于距离仓库出口最近的地方,B 类存放于距离出货口相对远一点的地方,而 C 类出库频率较低并且出货量较小,存放于距离出货口较远的地方。三类货品存放的大体位置如图 所示:

        根据表 2 分别对同类的货品进行关联度计算,计算结果如表 所示:

 根据关联度将其进行进一步的储位分配,在原有的基础上进行优化。各货物的储位分布如图 5所示

附:产品关联度计算分析方法

        这里仅教大家方法论。大家一定听说过购物篮分析。生活中,大多数人都喜欢逛超市,在超市里购买商品。选购产品的时候,消费者有时会选择有关联性的商品,例如买泡面时顺带一根火腿肠或者一个卤蛋、买面包时搭配一瓶牛奶。超市把有关联的商品摆放在一起,方便消费者购买

关联度=商品组合的发生次数/同时购买两种独立商品的次数估计值

商品组合的发生次数=两个产品同时购买的次数

独立商品的次数估计值=产品1的购买率×产品2的购买率×总购买次数

内容概要:本文详细探讨了智慧医疗建设的历程、现状、挑战及未来发展趋势。智慧医疗建设经历了信息化、数字化和数智化三个阶段,政策、需求和技术是其发展的三大推动力。文章指出,当前智慧医疗已从数据收集与治理阶段迈向数据价值应用阶段,特别是在高质量数据库建设、云计算、人工智能等技术的推动下,实现了临床科研、药物研发、真实世界研究及数字营销等多个场景的商业化落地。此外,文中还分析了医疗信息化系统同质化、数据孤岛、互联互通等痛点,并提出了云化转型、新产品、新技术和新服务作为突破方向。最后,通过奈特瑞、医渡科技、东软集团三个企业案例,展示了不同企业在智慧医疗领域的创新实践。 适合人群:医疗信息化从业者、医疗行业研究人员、医疗机构管理者、医疗科技企业相关人员、政策制定者及对智慧医疗感兴趣的投资者。 使用场景及目标:①了解智慧医疗建设的阶段性特征和发展趋势;②掌握医疗信息化建设中的关键技术和应用场景;③探讨解决医疗信息化系统同质化、数据孤岛等问题的策略;④学习企业如何通过新产品、新技术和新服务实现突破,推动智慧医疗发展。 其他说明:本文通过对智慧医疗建设的深入剖析,强调了政策导向、技术创新和市场需求的重要性,为企业和政策制定者提供了宝贵的参考。同时,文章也揭示了未来智慧医疗发展的广阔前景,特别是在数据资产化和数智化应用方面的巨大潜力。阅读时应注意结合政策背景和技术发展趋势,关注行业动态和企业创新实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

且行且安~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值