tf.nn,tf.layers, tf.contrib概述

转自:https://blog.csdn.net/u014365862/article/details/77833481

我们在使用tensorflow时,会发现tf.nn,tf.layers, tf.contrib模块有很多功能是重复的,尤其是卷积操作,在使用的时候,我们可以根据需要现在不同的模块。但有些时候可以一起混用

        下面是对三个模块的简述:

        (1)tf.nn :提供神经网络相关操作的支持,包括卷积操作(conv)、池化操作(pooling)、归一化、loss、分类操作、embedding、RNN、Evaluation。

        (2)tf.layers:主要提供的高层的神经网络,主要和卷积相关的,个人感觉是对tf.nn的进一步封装,tf.nn会更底层一些。

        (3)tf.contrib:tf.contrib.layers提供够将计算图中的  网络层、正则化、摘要操作、是构建计算图的高级操作,但是tf.contrib包含不稳定和实验代码,有可能以后API会改变。

以上三个模块的封装程度是逐个递进的。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值