文章目录
llama.cpp用普通CPU,零依赖,零外部API,让你在最低配置的硬件上也能流畅运行大模型。
1 llama.cpp
llama.cpp是由Georgi Gerganov开发的一个开源项目,它的核心使命很简单:让任何人都能在普通硬件上运行大语言模型。
llama.cpp是一个用C/C++编写的高性能、轻量级大语言模型(LLM)推理引擎,专注于在本地设备上高效运行大型语言模型,而无需依赖云服务或强大的 GPU。它最初由开发者Georgi Gerganov创建,旨在支持Meta的Llama系列模型,但现已发展为支持多种主流开源模型的通用推理框架。
1.1 llama.cpp的特点
(1)纯C/C++实现,零依赖
大部分AI框架都依赖Python、CUDA、各种深度学习库。
而llama.cpp是纯C/C++写的,没有任何外部依赖。这意味着什么?编译一次,到处运行。不用担心Python版本冲突,不用安装一堆驱动,甚至可以在嵌入式设备上跑。
(2)激进的量化技术
这是llama.cpp最核心的创新。传统模型使用16位或32位浮点数存储参数,而llama.cpp支持1.5位到8位的整数量化。想象一下,一个原本需要13GB内存的7B模型,量化后只需要3.5GB,性能损失却微乎其微。
(3)硬件适配的艺术
不管你是Mac的M系列芯片、Intel的CPU、还是ARM处理器,llama.cpp都能充分利用硬件特性。
订阅专栏 解锁全文
1712

被折叠的 条评论
为什么被折叠?



