- 博客(33)
- 收藏
- 关注
原创 重训练量化·可微量化参数
原文链接:https://www.yuque.com/yahei/hey-yahei/quantization-retrain_differentiable欢迎引用&转载,但烦请注明出处~在传统的QAT中,训练的只有权重,而量化参数是根据权重的分布所确定的。有研究者就想,为什么不把量化参数也作为训练对象呢?既然量化参数是可训练的,那么它能被求导,也就是可微的,所以我们可以称这类方法为“可微量化参数”。PACT论文:《PACT: Parameterized Clipping Activatio
2020-09-23 13:24:11 723
原创 重训练量化(改进QAT)
原文链接:https://www.yuque.com/yahei/hey-yahei/quantization-retrain_improved_qat欢迎引用&转载,但烦请注明出处~Quantize Aware Training(QAT)通过在训练过程中融入量化和反量化过程,来实现量化模型的精度恢复,但考虑一下量化过程![image.png](https://img-blog.csdnimg.cn/img_convert/a86094a7396694cbba5791bd488c0b63.pn
2020-09-21 19:55:01 2003
原创 Data-free量化
原文链接:https://www.yuque.com/yahei/hey-yahei/quantization-data_free欢迎转载&引用,但烦请注明出处~Data-free指的是不需要数据,它可以是完全不依赖数据也不利用生成数据,也可以是利用某些手段来生成数据。在量化上,Data-free既可以用于后训练量化,也可以用于重训练量化。Data-free量化的研究主要是希望在真实数据未知的情况下,对输入进行离线量化操作,通常都是借助BN层的统计信息(均值、方差)来直接确定输入的量化参数,或者
2020-09-18 13:05:47 1220
原创 后训练量化
原文链接:https://www.yuque.com/yahei/hey-yahei/quantization-post_training欢迎转载&引用,但烦请注明出处~按照是否需要训练划分,量化通常可以分为从头训练(train from scratch)、重训练(retrain)、后训练(post-training)三种,本文主要介绍几种后训练量化的方案,并以线性均匀分布的定点量化为例。**后训练量化指的是,对预训练后的网络选择合适的量化操作和校准操作,以实现量化损失的最小化,该过程不需要训
2020-09-15 15:58:04 2098
原创 【强化学习】Actor-Critic
原文链接:https://www.yuque.com/yahei/hey-yahei/rl-actor_critic参考:机器学习深度学习(李宏毅) - Actor-CriticActor with Critic以policy-based的actor为主体,融入value-based的critic;一般Policy Gradient的改进技巧在这里依旧同样适用AC: Actor-Critic回顾Policy Gradient,梯度的计算公式如下,∇Rˉθ≈1N∑n=1N∑t=1Tn(∑t′=t
2020-05-20 20:10:26 455
原创 【强化学习】Q Learning
原文链接:https://www.yuque.com/yahei/hey-yahei/rl-q_learning参考:机器学习深度学习(李宏毅) - Q Learning机器学习深度学习(李宏毅) - Q Learning Advanced Tips机器学习深度学习(李宏毅) - Q Learning Continuous Action基本形式Q Learning是一种value-based的RL算法,value-based算法旨在训练一个Critic(记为VπV^\piVπ),它与某个Ac
2020-05-20 20:09:18 615
原创 【强化学习】Policy Gradient
原文链接:https://www.yuque.com/yahei/hey-yahei/rl-policy_gradient参考:机器学习深度学习(李宏毅)- Deep Reinforcemen Learning3_1机器学习深度学习(李宏毅)- Policy Gradient机器学习深度学习(李宏毅)- Proximal Policy Optimization策略梯度策略梯度(Policy Gradient)是一种policy-based的RL算法。基本形式![image.png](ht
2020-05-20 20:08:31 248
原创 【强化学习】Introduction
原文链接:https://www.yuque.com/yahei/hey-yahei/rl-introduction参考:强化学习纲要(周博磊) 第一课 概括与RL基础 上、下机器学习深度学习(李宏毅)- Deep Reinforcemen Learning3_1核心思想![image.png](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9jZG4ubmxhcmsuY29tL3l1cXVlLzAvMjAyMC9wbmcvNTA0MzI4LzE1ODk3Nj
2020-05-20 20:06:20 288
原创 知识蒸馏
原文链接:https://www.yuque.com/yahei/hey-yahei/knowledge_distillation知识蒸馏(Knowledge Distillation, KD),按照字面意思,就是将某个经过训练网络的知识,蒸馏到另一个网络上去。换句话说,存在一个已经训练好的,具备知识的成熟教师网络(Teacher),用它来指导学生网络(Student)的学习过程。对学生网络而言...
2020-05-06 10:57:17 4137
原创 细数目标检测中的损失函数
原文链接:https://www.yuque.com/yahei/hey-yahei/objects_detection#zoJwH损失函数目标检测中最经典的损失函数就是Faster RCNN所用的“softmax交叉熵分类损失 + SmoothL1回归损失”的形式,后来有很多改进的目标检测网络、方案也陆续提出了一些损失函数上的改进。分类损失参考:《目标检测小tricks–样本不均衡处...
2020-04-23 10:37:24 1628
原创 从SENet到ResNeSt
原文链接:https://www.yuque.com/yahei/hey-yahei/typical_cnn#NY1oJSENet论文:《Squeeze-and-Excitation Networks (CVPR2018)》提出了SE模块,是注意力机制的一种应用,学习特征图上通道间的相关性,作为权重ReScale各个通道;SE模块相当于一个轻量级的插件,可以方便地插入到已有的网络中去。SE模块...
2020-04-23 10:33:54 734
原创 分类网络速览
原文链接:https://www.yuque.com/yahei/hey-yahei/typical_cnn参考:《Hands-On Machine Learning with Scikit-Learn and TensorFlow(2017)》Chap13《卷积神经网络——深度学习实践手册(2017.05)》CNN的典型组合方式是,以 卷积层+激活函数(比如relu)+池化层 作为一...
2020-04-01 11:57:53 398
原创 正则化技术
原文链接:https://www.yuque.com/yahei/hey-yahei/regularization正则化指的是为模型引入一些约束,一定程度上限制模型的拟合能力,减缓收敛速度,从而缓解过拟合现象的一系列方法。参考:《Hands-On Machine Learning with Scikit-Learn and TensorFlow(2017)》Chap11《卷积神经网络——...
2020-03-26 17:42:24 3280
原创 优化器
原文链接:https://www.yuque.com/yahei/hey-yahei/optimizer参考:《Hands-On Machine Learning with Scikit-Learn and TensorFlow(2017)》Chap11torch.optim常见的加速训练技术:恰当的的权重初始化策略:打破初始值的对称性,初始值也不能太小恰当的激活函数:选用导数数...
2020-03-23 23:16:20 215
原创 梯度消失与梯度爆炸
原文链接:https://www.yuque.com/yahei/hey-yahei/gradient_vanish_explode在深度学习任务中,随着层数的增加,因为反向传播的链式求导规则,梯度容易出现指数形式地减小或增长,从而导致梯度消失(非常小,训练缓慢)或梯度爆炸(非常大,训练不稳定)现象的发生。相比CNN,RNN更容易出现梯度消失和梯度爆炸问题,这一点在《梯度消失与梯度爆炸 - 为...
2020-03-23 10:19:54 682
原创 损失函数
原文链接:https://www.yuque.com/yahei/hey-yahei/target_function目标函数(target function)、损失函数(loss function)、代价函数(cost function)是一个东西~目标函数是一个用来衡量模型预测结果与实际结果(通常称为Ground Truth)之间差距的一个函数,在深度学习中,训练模型通常就是指以最小化该差距...
2020-03-23 10:09:31 1023
原创 移位量化(对数量化)
原文链接:https://www.yuque.com/yahei/hey-yahei/shift_quantization移位量化也可以称为对数量化,将数值从浮点数的形式量化为一个整数或定点数,但它与线性量化不同,两个相邻数之间是在以2为底的对数域上均匀分布的,这使得实际推理当中可以直接通过移位运算来快速实现,同时也拥有随比特数增长而指数增长的大动态范围。移位量化既可以只量化权重(对激活值移位)...
2020-03-08 15:18:12 4554 1
原创 二值量化
原文链接:https://www.yuque.com/yahei/hey-yahei/binary_quantization最近号称达到MobileNet水平的二值网络MeliusNet面世,趁这个机会顺便梳理一下二值量化的发展历程吧。参考:《MeliusNet: Can Binary Neural Networks Achieve MobileNet-level Accuracy? (2...
2020-02-22 00:45:35 3534
转载 语义分割速览
语义分割速览原文链接:https://www.yuque.com/yahei/hey-yahei/segmentation简单过一下语义分割的主流框架——FCN、UNet、SegNet、PSPNet、DeepLab分割任务论文集与各方实现:https://github.com/mrgloom/awesome-semantic-segmentationpytorch model zoo:ht...
2020-02-12 20:44:27 1308
原创 leetcode(c++)
放假没事刷几道leetcode,一些常见典型题的答案和解析。平时python用的比较多,但分析复杂度的时候用python编程不方便,所以刷题的时候用了c++C++基础《C++编程思想》笔记vector, list, dequeuestack, queuestringpair, set, mapalgorithm数组&链表https://www.yuque.com/y...
2020-02-04 21:53:49 261
原创 漫谈池化层
原文链接:漫谈池化层 | Hey~YaHei!参考:《Hands-On Machine Learning with Scikit-Learn and TensorFlow(2017)》Chap13《Hands-On Machine Learning with Scikit-Learn and TensorFlow》笔记《卷积神经网络——深度学习实践手册(2017.05)》《Deep L...
2019-11-04 13:06:44 1983
原创 MixConv:混合感受野的深度可分离卷积
原文链接:MixConv:混合感受野的深度可分离卷积 | Hey~YaHei!继EfficientNet和CondConv之后,我们再来聊聊Google Brain的另一篇图像特征提取相关的论文《MixConv: Mixed Depthwise Convolutional Kernels(2019BMVC)》,作者采用类似inception的大小核混合卷积结果,再结合深度可分离卷积的特性,做到少...
2019-11-01 10:33:28 2147
原创 EfficientNet:模型设计新范式
原文链接:EfficientNet:模型设计新范式 | Hey~YaHei!唔~2019年的图像特征提取方面似乎有了可喜的发展,大家不再盲目地堆大模型,而是寻找更加高效的特征提取结构,在显著减小参数量和计算量的同时模型的表现还能得到提升。同时我们可以看到深度可分离卷积及其变种几乎已经成为主流——接下来我将分三次分别介绍今年Google Brain的几篇思路清奇的论文,首先是《Efficien...
2019-10-31 12:14:19 571
原创 CondConv:按需定制的卷积权重
原文链接:CondConv:按需定制的卷积权重 | Hey~YaHei!最近正巧在看条件计算的东西,发现今年Google Brain发了一篇思路清奇的论文《CondConv: Conditionally Parameterized Convolutions for Efficient Inference(2019NeurIPS)》,这思路简直让人拍案叫绝,只可惜这种模型需要重新定制卷积算子才能有...
2019-10-31 12:10:36 6194 9
原创 Winograd数学原理
原文链接:《Winograd数学原理 | Hey~YaHei!》早前《Winograd卷积原理 | Hey~YaHei!)》一文已经介绍过Winograd的卷积原理,但有些细节似乎尚不明确——Winograd为何能够奏效?它背后的数学原理是什么?变换矩阵如何得到?本文将借鉴《源于《孙子算经》的Cudnn | 知乎, Silicon Valley》和《wincnn/2464-supp....
2019-09-20 14:42:53 645
原创 浅探Winograd量化
原文链接:浅探Winograd量化 | Hey~YaHei!上一篇文章《Winograd卷积原理 | Hey~YaHei!》已经介绍过Winograd卷积的基本原理,但终究是理论上的推导,在实际应用的时候其实有些耐人寻味的地方:数学推导假设的是无限的精度和数值范围,但实际计算机的运算精度与数值范围都是有限的,不过按照论文《Fast algorithms for convolutional neu...
2019-08-23 15:55:47 988
原创 Winograd卷积原理
原文链接:Winograd卷积原理 | Hey~YaHei!Winograd算法最早于1980年由Shmuel Winograd在《Arithmetic complexity of computations(1980)》中提出,主要用来减少FIR滤波器的计算量。该算法类似FFT,将数据映射到另一个空间上,用加减运算代替部分乘法运算,在“加减运算速度远高于乘法运算”的前提下达到明显的加速效果(与...
2019-08-22 18:37:31 3802 3
原创 MobileNet全家桶
原文链接:https://hey-yahei.cn/2019/07/24/MobileNet-Family/MobileNet自2017年发布v1以来就被广泛应用在移动端,随后又分别在2018年和2019年发布了v2和v3。去年《MobileNets v1模型解析 | Hey~YaHei!》一文中已经讨论过v1的主要贡献,趁着前阵子*(已经是两个月前了其实)*刚刚发布v3,不妨把整个Mobile...
2019-07-24 16:25:31 519
原创 线性量化
原文链接:https://hey-yahei.cn/2019/07/23/Quantization/简单来说,量化就是将浮点存储(运算)转换为整型存储(运算)的一种模型压缩技术。如果按《当前深度神经网络模型压缩和加速都有哪些方法?-机器之心》一文的分类方式,量化属于参数共享的一种——将原始数据聚为若干类(比如int8量化为28=2562^8=25628=256类),量化后的整型值就相当于类的索引...
2019-07-23 16:32:20 4682
原创 2019中兴捧月·总决赛心得
2019中兴捧月·总决赛心得原文链接:https://hey-yahei.cn/2019/05/25/zte_challenge_final/赛题背景与初赛类似,不过初赛更多关注的是加速,而总决赛更关注的是压缩。原始模型是一个简单的3x112x112输入大小的resnet18,人脸识别项目,主办方提供了两万张无标签的校准数据集,和两千张带标签的本地验证数据集,同时主办方保留两千张私有、不公...
2019-06-20 16:31:03 2038
原创 2019中兴捧月·初赛心得
2019中兴捧月·初赛心得原文链接:https://hey-yahei.cn/2019/05/22/zte_challenge_preliminary/赛题背景自从 Alex Krizhevsky 夺得 ILSVRC 2012 ImageNet 图像分类竞赛的冠军后,深度卷积神经网络在图像分类、物体检测、语义分割、目标跟踪等多个计算机视觉任务中均取得优秀表现,更有甚者在某些领域超越人眼的精度...
2019-06-20 16:27:07 4085
原创 模型参数与计算量
模型参数与计算量原文链接:https://hey-yahei.cn/2019/01/07/MXNet-OpSummary/这一两个月比较忙,没什么时间空下来写写博文,加上最近处于摸索阶段,各种思路还没有理清,不敢瞎写。这两天看到Lyken17的pytorch-OpCounter,萌生了一个写一个MXNet的计数器的想法,项目已经开源到github上,并且做个pip的包,嘻嘻……第一次做包,虽...
2019-06-20 16:16:57 12061 1
原创 漫谈卷积层
漫谈卷积层原文链接:https://hey-yahei.cn/2019/03/28/Conv-Family/ 去年刚入手深度学习的时候写过一篇《卷积神经网络CNN | Hey~YaHei!》,简单介绍过卷积层——不过经过一年的学习和实践,对卷积又有了新的认识,原本讲道理应该直接更新修改去年的那篇博文的。但是那篇博文涉及面较广,不单单讲卷积,而且之后还写过几篇引用了那篇博文的内...
2019-03-28 20:15:39 3658
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人