A robust three-stage approach to large-scale urban scene recognition(2)——[19]三维重建表面的高阶CRF结构分割

目的:将大规模城市环境的多视图立体重建表面(三角形网格S)分割为structural segments。每个segments对应于由最多二阶的表面单元描述的structural component如外观,屋顶,圆顶等),该分割用于随后的城市对象建模,矢量化和识别。

方法概述:为了克服3D重建城市表面中的高几何和拓扑噪声水平,我们用公式将结构分割表示为高阶条件随机场(CRF)标记问题。它不仅合并了经典的低阶2D和3D局部线索,还编码上下文几何regularities以消除嘈杂的局部线索的歧义。一般的高阶CRF难以解决。我们通过the patch-based的表面表示开发自下而上的渐进式方法,该方法从初始网格三角形迭代演变为最终分割。每次迭代都交替的执行prior discovery step和inference step,prior discovery step用来发现patch-based表示的上下文regularities,inference step则利用发现的regularities作为高阶先验来构建一个更加稳定和规律的分割。

主要创新点

1.用于2D-3D联合分割的新的高阶CRF公式

2.隐式的patch-based的表面表示降低了复杂性,这使得高阶CRF能够以有效的方式解决。

3.一种有效的算法,包括中间图形匹配,以施加更高阶的形状先验,容忍缺陷并产生高规律性的结果。

主要步骤

1.使用大规模MVS方法(例如,[7,17,27]),通过多视图图像{I}重建三角形网格S。

2.采用CRF框架,通过最小化能量函数来预测每个表面单元的标签

表面S由称为表面单元{x0,x1,...,xn}的一组不相交的patches表示。结构分割被公式化为标记问题:属于相同structural component的表面单元被赋予相同的标签。但是,噪声的存在严重降低了表面单元的局部特性,使得它们无法恢复正确的标签。需要考虑邻近地区以及全局背景。这促使我们采用CRF框架,一种结构化的概率模型,来预测最可能的标签。

我们通过最小化能量函数为y(x的标签)分配最佳标签。

一元potential φi测量xi与输入多视图图像I的光度相关性,成对potential ψij 在xi和xj的交点处编码2D-3D联合域不连续约束,高阶potential ψR规则性先验强加在规则而干净的分割上。通过交叉验证来学习涉及potential的参数。

当相邻单元被分配给相同的标签时,通过体积差异测量来评估它们的合并,体积差异测量表示差矢量n沿法线方向的拟合二次曲线的长度。

Data: mesh surface S, images I, threshold ε.

Result: structural segmentation represented by a graph G (Each node x G represents a disjoint surface patch, and y is the label of x that represents a quadric.). Initialize G(0) as the dual graph of S ;

repeat

Ensure local photo-geometry consistency using lower order potentials φi and ψij (Eqn 2, 3);

Find regular patterns {R} in G(t) (Eqn 6);

for each R do

Identify every subgraph Gc G(t) that closely matches R;

Conform Gc to R by imposing higher order potential ψR (Eqn 7);

end

Infer the labeling y(t) by minimizing E(t) (Eqn 1);

Reduce G(t) to G(t+1) by merging nodes with the same label, and volume discrepancy is less than ε

(as shown in Figure 2);

Update the label set Ly by fitting new nodes {x(t+1)} with quadrics;

until G(t+1) = G(t);

Algorithm 1: Overview of the iterative algorithm

合并后,一组新的合并后的表面单元x(t+1)用于下一次迭代,y(t)用作x(t)的初始标记,如算法1所示。在每次迭代后,基于表面的表示被简化,如图2所示。我们的分割方法相当于一个渐进式的图缩减。随着图表的减少,标签问题的复杂性也会降低。

图2:渐进式分割和图形(数量)缩减。每个表面分区(顶部)对应patch-based的图形表示(底部)。由于分割过程受规则性约束,因此缩减的图形在视觉上是规则的。

 

3.将相同标签的表面单元聚合成更大的表面单元{cliques}。

 

4.从{cliques}中通过子图同构方法gSpan [29]发现regularities(相当于一个规律性先验),并将其用于整合那些有噪音的部分,最终形成一个个structural component。

重建的网格固有地包含几何和拓扑噪声(例如,图1,6中普遍存在的扭曲,空洞和属),这会影响局部几何属性的可靠性。有一个城市假设被用来消除噪音的局部属性,该假设认为城市场景的人造物体通常都被设计成有规律的。我们的关键观察是结构模式的重复是一种独特的城市规律。例如,平行度是表面取向或边缘方向的重复;对称性是几何形状的重复;建筑风格是结构元素组合之间相互关系的重复。接近[31]中的想法,通过支持重复,抑制细微的细节和噪音,我们能够获得更规则的表面分区。当一个集团(cliques)(一组有条件地依赖于彼此的表面单元)的标记符合频繁的标记模式的时候,我们认为是它是规则的,并且该模式被称为一个regularity

语境规律。我们从输入中内在地定义规律性。例如,图3和图4显示了从宫殿和高层建筑中发现的规律性。regularity是patch-based的表面表示中的足够频繁的图形模式R =(xR,yR,aR,bR)。

图形模式的重现由图论概念子图同构定义,子图同构是两个标记图之间的结构保持双射。 通过使用精确的子图同构方法gSpan [29]找到regularities

我们首先使用子图同构来讨论regularity的发现,然后我们提出了一个Higher-order Regularity Potential,将regularities约束编码为先验,最终提高了分割质量。我们提出的regularity-constrained potential鼓励每个cliques采用足够频繁的标签模式。

图3:(a)顶部:第t次迭代的表面分区。底部:相应的patch-based的表面表示G(t)。(b)R是在G(t)中发生四次的regularity。节点和边缘由标签进行颜色编码。(c)含有R的四个子图的标签是规则的。(d)鼓励四个cliques保留其标签。检测到平移,旋转(例如,c2和c3)和反射(例如,c3和c4)对称性。

The higher-order potentials编码我们刚刚发现的regularities。这些regularities比传统网格分割方法所依赖的局部几何属性更具表现力。同时,The higher-order potentials允许捕获表面单元之间的多个相互作用。表面单元之间的相互关系可以消除不可靠的局部线索的歧义,并得到更准确的分区。

一旦我们恢复了regularities,我们可以使用它们来执行不精确的匹配以找到其他不完美的实例,这是基于以下事实:一个regularity的一些损坏的实例可能由于缺陷而难以识别; 同时,其他实例仍然是精确的,因此可以用来发现regularity。因此,我们首先通过精确匹配来计算regularities,这可以通过精确的图同构来有效地解决。然后我们使用这些regularities将它们与G中的所有子图不完全匹配。这些规则性先验使我们的方法能够应对噪声。通过利用城市场景的这种冗余性质,我们的方法接受数据不完善。在处理歧义(这在立体重建网格中是不可避免的)时,它也优于以前的方法。

参考文献:

[7]Y. Furukawa and J. Ponce. Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):1362–76, Aug. 2010. 1, 2, 6

[17]M. Lhuillier and L. Quan. A quasi-dense approach to surface reconstruction from uncalibrated images. IEEE Transactions on PatternAnalysis and MachineIntelligence, 27(3):418–33, Mar. 2005. 2, 6

[27]H.-H. Vu, P. Labatut, J.-P. Pons, and R. Keriven. High accuracy and visibility-consistent dense multiview stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(5):889–901, May 2012. 1, 2, 6

[29]X. Yan and J. Han. gSpan: graph-based substructure pattern mining. In IEEE International Conference on Data Mining, volume 1, pages 721–724. IEEE Comput. Soc, 2002. 5

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值