Opencv图像识别从零到精通(2)-----准备知识

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_20823641/article/details/51879160


      首先你安装好了,然后用一个测试文件(没有测试文件可以找后面教程中的图像显示的代码粘贴),可以正常的运行。

      然后还不要着急去学习怎么图像处理,因为还要知道一些常识。

     准备知识也是很重要

  1.      模块
  2.      #include
  3.      namespace
  4.      argc argv
  5.      Mat

(1) 模块

          在这个文件下D:\ProgramFiles\opencv\build\include\opencv2会看到很多东西,这些都是需要的模块,里面有很多的要用的东西

                                       

       介绍这个就不说了

       因为是图像处理,先不用管那么多的模块,先去认识core imgproc  highgui这三个,其他的用到的时候再去看吧

       为 什么要看这个三个呢?

一、Core 核心功能模块(核心所以必须要啊),主要包含opencv基本数据结构,动态数据结构,绘图函数,数组操作相关函数,听听这些名字就知道必须要用了


二、Imgproc 这是图像处理模块,既然是处理图像,那也是没的说了


三、Highgui GUI图形用户界面,简单的说,你要用窗口,用界面,什么输入输出了,那你就用他的模块了


 (2)#include

           正如你经常看到的,每个代码的前面都会有这养的include,包含才可用,学过c++的应该很懂

#include <opencv2/core/core.hpp> 

#include<opencv2/highgui/highgui.hpp> 


   (3) namespace

          还有一个需要注意的是这样的话

using namespace cv;
using namespace std;

        因为OpenCV中的C++类和函数都是定义在命名空间cv之内的,想要用,就的提前给人家打声招呼,所以要加上using namespacecv;这个方法比较好,只要一句话就可以,但是如果你加这一句,那么后面如果你要用类和函数的话,你就的这样写,很麻烦,std同理,std是一个类(输入输出标准),它包括了cin成员和cout成员,usingname space std ;以后才能使用它的成员。

image=cv::imread(“lena.jpg”)
cv::nameWindow(“original image”);
cv::imshow(“original image”,image)
   

   (4) argc argv

对于一个程序来说,都会有一个main()函数

例如我们常用的一句话 

 main(int argv char **argv)

         这里的int argc 为整型,用来统计程序运行时,发送给main函数的命令行参数;char **argv 是字符串数组用来存放指向字符串参数的指针数组,每一个元素指向一个参数

imread(argv[1],1),//意思是读取字符串名为argv[1]的图片,argv[1]指向在DOS命令行中执行程序名后的第一个字符串


(5)Mat

       自从版本2.0,OpenCV采用了新的数据结构,用Mat类结构取代了之前用extended C写的cvMat和lplImage(在学习代码的时候,会经常看到IplImage),更加好用啦,最大的好处就是更加方便的进行内存管理,对写更大的程序是很好的消息。

        如果光说Mat其中就可以是一篇很长的文章,因为用法太多,Mat是OpenCV里最基本的一个类,它用来表示图像,有部分组成,一个是矩阵头,一个是指向存储所有像素值的矩阵的指针,其中幅值与复制只是复制了信息头。下面给出超具体的例子,可以慢慢体会每一个Mat的应用,还有以前一篇写的复制问题可以参考http://blog.csdn.net/qq_20823641/article/details/51452939
#include <opencv2/core/core.hpp>  
#include <opencv2/highgui/highgui.hpp>  
#include <cv.h>  
#include <iostream>  
  
using namespace std;  
using namespace cv;  
  
int main()  
{  
      
        //Mat() Constructor  
        Mat M(2,2,CV_8UC3,Scalar(0,0,255));  
        cout<<"M = "<<endl<<" "<<M<<endl<<endl;  
      
        //C/C++ arrays and initialize via constructor  
        int sz[3]={2,2,2};//创建一个三维矩阵  
        Mat L(3,sz,CV_8UC1,Scalar::all(0));  
        //cout<<"L = "<<endl<<" "<<L<<endl<<endl;  
  
  
        //create a header for an already existing IplImage pointer  
        IplImage* img = cvLoadImage("D:\\lena.bmp",1);  
        Mat mtx(img);//把IplImage*转换为Mat  
      
        //create()函数  
        M.create(4,4,CV_8UC(2));  
        cout<<"M = "<<endl<<" "<<M<<endl<<endl;  
      
        //MATLAB风格初始化:zero(),ones(),:eyes().  
        Mat E = Mat::eye(4,4,CV_64F);  
        cout<<"E = "<<endl<<" "<<E<<endl<<endl;  
        Mat O = Mat::ones(2,2,CV_32F);  
        cout<<"O = "<<endl<<" "<<O<<endl<<endl;  
        Mat Z = Mat::zeros(3,3,CV_8UC1);  
        cout<<"Z = "<<endl<<" "<<Z<<endl<<endl;  
      
        //小矩阵用逗号初始化  
        Mat C = ( Mat_<double>(3,3)<< 0,-1,0,-1,5,-1,0,-1,0);  
        cout<<"C = "<<endl<<" "<<C<<endl<<endl;  
  
  
        //对已经存在的Mat对象创建新的头,并克隆或复制  
        Mat RowClone = C.row(1).clone();  
        cout<<"RowClone = "<<endl<<" "<<RowClone<<endl<<endl;  
      
        //利用随机函数创建Mat矩阵  
        Mat R = Mat(3,2,CV_8UC3);  
        randu(R,Scalar::all(0),Scalar::all(255));  
        cout<<"R = "<<endl<<" "<<R<<endl<<endl;  
      
        //打印输出格式化  
        //default格式  
        cout<<"R(default) = "<<endl<<R<<endl<<endl;  
        //Python格式  
        cout<<"R(Python) = "<<endl<<format(R,"python")<<endl<<endl;  
        //comma separated values(CSV)  
        cout<<"R(csv) = "<<endl<<format(R,"csv")<<endl<<endl;  
        //numpy  
        cout<<"R(numpy) = "<<endl<<format(R,"numpy")<<endl<<endl;  
        //C  
        cout<<"R(c) = "<<endl<<format(R,"C")<<endl<<endl;  
  
        //2D Point  
        Point2f p(5,1);  
        cout<<"Point(2D) = "<<p<<endl<<endl;  
        //3D Point  
        Point3f P3f(2,6,7);  
        cout<<"Point (3D) = "<<P3f<<endl<<endl;  
        //std::vector via cv::Mat  
        vector<float> v;  
        v.push_back((float)CV_PI);  
        v.push_back(2);  
        v.push_back(3.01f);  
        cout<<"Vector of floats via Mat = "<<Mat(v)<<endl<<endl;  
        //std::vector of points  
        vector<Point2f> vPoints(20);  
        for(size_t E=0;E<vPoints.size();++E)  
        vPoints[E] = Point2f((float)(E*5),(float)(E%7));  
        cout<<"A Vector of 2D POINTS = "<<vPoints<<endl<<endl;  
        return 0;  
}  

                      

 除此之外呢,Mat类还有很多的属性,方便我们理解图像矩阵,例如高度、宽度等

Mat img(3, 4, CV_16UC4, Scalar_<uchar>(1, 2, 3, 4));
    
    cout <<"img is:"<< img << endl;

    cout << "dims:" << img.dims << endl;
    cout << "rows:" << img.rows << endl;
    cout << "cols:" << img.cols << endl;
    cout << "channels:" << img.channels() << endl;
    cout << "type:" << img.type() << endl;
    cout << "depth:" << img.depth() << endl;
    cout << "elemSize:" << img.elemSize() << endl;
    cout << "elemSize1:" << img.elemSize1() << endl;


图像识别算法交流 QQ群:145076161,欢迎图像识别与图像算法,共同学习与交流

展开阅读全文

没有更多推荐了,返回首页