Savitzky-Golay平滑去噪

       平滑滤波是光谱分析中常用的预处理方法之一。用Savitzky.Golay方法进行平滑滤波,可以提高光谱的平滑性,并降低噪音的干扰。S-G平滑滤波的效果,随着选取窗宽不同而不同,可以满足多种不同场合的需求。

        Savitzky-Golay卷积平滑算法是移动平滑算法的改进。

          

       每一测量值以平滑系数的目的是尽可能减少平滑对有用信息的影响,该烧平滑去噪算法的劣势,可基于最小二乘原理,用于多项式拟合求的。

        Savitzky-Golay卷积平滑关键在于矩阵算子的求解。

         设滤波窗口的宽度为n=2m+1,各测量点为x=(-m,-m+1,0,,,,0,1,…m-1,m)采用k-1次多项式对窗口内的数据点进行拟合

         

于是就有了n个这样的方程,扣成了k元线性方程组。要使方程组有解则n应大于等于k,一般选择n>k,通过最小二乘法拟合确定拟合参数A。由此得到

 


最后我自己得到的效果不是很明显,因为曲线本身的噪声不多,所以借用一张很清晰的曲线来表达,这个效果更让人接受。


 

在Microcontroller (MCU) 环境下,使用C语言编写Savitzky-Golay滤波器进行信号平滑通常涉及到数字信号处理的基本算Savitzky-Golay滤波器是一种基于多项式插值的低通滤波方,常用于提高测量数据的精度。 下面是一个简单的Savitzky-Golay滤波器在C语言中的示例,假设我们有一个一维数组存放了需要处理的数据。由于MCU资源有限,这里我们只提供核心代码框架,实际应用可能需要优化以适应MCU环境: ```c #include <stdio.h> #include <math.h> // Savitzky-Golay滤波函数的核心 void savitzky_golay_filter(float *data, int length, int order, int window_size) { // 计算相关系数矩阵 float coefficients[window_size][order + 1]; for (int i = 0; i <= order; i++) { for (int j = 0; j < window_size; j++) { coefficients[j][i] = binom(window_size - 1, i) / binom(window_size, i); } } // 滤波过程 for (int i = window_size / 2; i < length - window_size / 2; i++) { float sum = 0; for (int j = 0; j < window_size; j++) { float x = i - 1) / 2 + j; float y = data[i] - data[x]; // 差分计算 sum += y * coefficients[j][0]; for (int k = 1; k <= order; k++) { sum += y * coefficients[j][k] * pow(x, k); } } data[i] = sum / window_size; } } // Binomial coefficient计算 unsigned long long binom(int n, int k) { unsigned long long res = 1; if (n >= k) for (int i = 0; i < k; ++i) res *= (n - i), res /= (i + 1); return res; } // 示例数据输入 float noisy_data[] = { /* ... */ }; int noisy_length = sizeof(noisy_data) / sizeof(noisy_data[0]); // 应用Savitzky-Golay滤波 savitzky_golay_filter(noisy_data, noisy_length, 2, 5); // 假设使用2阶多项式,窗口大小为5 // 输出处理后的数据 for (int i = 0; i < noisy_length; i++) { printf("%.2f ", noisy_data[i]); }
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值