双目视觉
文章平均质量分 88
luxiaohai的学习专栏
这个作者很懒,什么都没留下…
展开
-
论文笔记《End-to-End Training of Hybrid CNN-CRF Models for Stereo》用于立体评估的端到端训练的混合CNN-CRF模型
论文作者提供的源码 https://github.com/VLOGroup摘要:1. 介绍2. 相关工作3. CNN-CRF 模型3.1 Unary CNN3.2 Correlation3.3 CRF3.4 Pairwise CNN4. 训练5. 实验5.1 单独组件的性能5.2 联合训练的好处5.3 性能测试6. 总结摘要:本文提出一...原创 2017-12-21 11:36:57 · 3383 阅读 · 0 评论 -
论文笔记《Learning Deep Correspondence through Prior and Posterior Feature Constancy》
摘要介绍相关工作本论文方法1 用于多尺度特征提取的茎块2 初始视差估计子网络3 视差精细化子网络4 迭代精细化实验1 脱离实验 2 测试基准结果总结参考文献摘要立体匹配算法通常由四步组成:代价计算、代价聚合、视差计算和视差精细化。现有的基于CNN的立体匹配方法仅仅采用CNN来解决四步中的部分,或者使用不同的网络来处理不同的步骤,这使得它们很难获得全局最优的解决方案。这篇论文提原创 2017-12-25 21:52:23 · 2434 阅读 · 5 评论 -
论文阅读《Cascade Residual Learning: A Two-stage Convolutional Neural Network for Stereo Matching》
摘要介绍相关工作堆叠残差学习1 两阶段视差计算2 多尺度残差学习3 网络架构实验1 实验设置2 架构对比3 和其他方法比较总结参考文献摘要为解决在立体匹配内在的病态区域(目标遮挡、重复模式、无纹理区域等)难产生高质量的视差问题,这篇论文提出一种新颖的由两个阶段组成的堆叠卷积神经网络结构。第一个阶段:利用DispNet,加上额外的能够使视差图获得更原创 2018-01-21 20:58:18 · 5059 阅读 · 12 评论 -
论文阅读笔记《PatchMatch Stereo - Stereo Matching with Slanted Support Windows》
摘要介绍算法1 模型2 通过PatchMatch方法来计算视差3 后处理4 为全局方法建立一个数据项实验结果摘要一般的局部立体方法是在一个具有整型数值视差的支持窗口中进行匹配。其中隐含的一个假设:在支持区域中的像素具有恒定的视差,这个假设在倾斜表面是不成立的,因而倾向于重建前端平行的表面。本论文通过估计每个像素上的一个单独的3D平面,并在此基础上投射出支持区域原创 2018-01-13 15:04:46 · 12098 阅读 · 7 评论