机器学习
文章平均质量分 89
luxiaohai的学习专栏
这个作者很懒,什么都没留下…
展开
-
朴素贝叶斯法
贝叶斯定理贝叶斯推断朴素贝叶斯法贝叶斯定理贝叶斯定理(Bayes’ theorem): 实际上就是计算”条件概率”的公式。 所谓”条件概率”(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。 最后得到条件概率计算公式为: 贝叶斯推断全概率公式: 假定样本空间S,是两个事件A与A’的和。在这种情况下,事件B可以划分成原创 2018-01-02 14:46:31 · 333 阅读 · 0 评论 -
决策树
决策树(decision tree):基本的分类与回归方法。决策树模型与学习1 决策树模型2 决策树学习特征选择1 信息增益information gain2 信息增益比information gain ratio决策树的生成1 ID3算法2 C45的生成算法决策树的剪枝CART算法1 决策树模型与学习1.1 决策树模型分类决策树模型原创 2018-01-03 17:05:24 · 896 阅读 · 0 评论 -
极大似然估计 极大后验估计 贝叶斯估计 最小二乘法
极大似然估计极大后验估计贝叶斯估计最小二乘法1 极大似然估计极大似然估计(Maximum Likelihood Estimation, MLE)/最大似然估计/最大概似估计 是一种参数估计方法,即已知样本估计出模型的参数。一般说来,事件A发生的概率与某一未知参数θ\theta有关,θ\theta取值不同,则事件A发生的概率 P(A|θ)P(A|\theta)也不同,当我们在一次试验中事件A发生原创 2018-01-04 11:06:20 · 2354 阅读 · 0 评论