SLAM论文阅读
文章平均质量分 93
季马宝宝
侠之小者,为情为私
展开
-
每日浅读SLAM论文——简析LIO-SAM
今天讲一篇经典的LIO(LiDAR-Inertial Odometry)SLAM论文——LIO-SAM。雷达+里程计由于其高鲁棒性、较低成本(二维雷达不贵、三维雷达价格也在降、IMU不太贵),可以说是工业机器人应用最广泛的SLAM解决方案了。对于三维LiDAR+IMU的结局方案,在github上的开源算法并不多,甚至可以说就LIO_SAM和FAST_LIO两种(及它们的前身和衍生物)。原创 2023-07-07 21:18:30 · 2810 阅读 · 0 评论 -
每日浅读SLAM论文——简析Gmapping
第5行,根据目前移动到的位置,以及在这个位置下激光打到的结果,打个分数(比如激光打到地方在地图上也是障碍物+1分这种),这样可以给每个粒子计算一个权重,乘上之前的权重,权重最高的那个粒子就会被认为是目前的结果。8-11行是在进行重采样,因为随着算法进行,有些粒子权重会非常低,几乎不能表示真是情况,且消耗计算资源,因此我们会将权重高的粒子多复制几份,权重低的可能就丢弃了。我们直接从粒子滤波框架开始讲起(我会讲的很浅显,即便你不会粒子滤波,但是要真正掌握还是要认真看推导,比如去看概率机器人)。原创 2023-07-05 02:00:28 · 1324 阅读 · 0 评论 -
每日浅读SLAM论文——简析Cartographer
它的主要工作在后端,使用分支定界优化了CSM算法,然后构建了位姿和submap之间的约束图,使用SPA(一种利用图稀疏性来加速优化,这可以说是真正将图优化投入实际使用的算法,学习到一定深度了可以再去学习,总之是一种快速进行图优化的算法)进行优化。显然,这种算法复杂度很高。其实我们很容易想到一种简单的算法(我瞎想的,便于理解),假设一开始x搜索范围之[-10,10],步长为1,搜一百次,取分数最高的10次,这10次分数都在[-1,1]之间,那我改步长为0.1搜索新的区间。就是前端,核心就是优化这个函数,原创 2023-07-05 01:01:38 · 1239 阅读 · 0 评论