模式识别——高斯分类器

模式识别——高斯分类器

需知

所有问题定义在分类问题下,基于贝叶斯决策

定义

条件概率为多元高斯分布,此时观测为向量 X = X 1 , X 2 , . . . , X n X={X_1,X_2,...,X_n} X=X1,X2,...,Xn,通过极大后验展开可以得到最优决策函数:
在这里插入图片描述
决策函数可以写为:
在这里插入图片描述
d d d就是马氏距离,代表两个高斯分布之间的距离。而 α \alpha α则代表了类别的先验。

特殊情况(方差一致)

方差一致的话分类器就是线性的。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

Sigmoid

使用原始的BDR定义可以推导出,每个类别的概率概率为sigmoid函数(原始定义考虑观测的边缘概率,所以计算的就是概率(概率和为1),所以为sigmoid函数。而在决策时不考虑边缘概率,约掉了归一化参数,其实两者的判决边界仍然是相同的)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
协方差一致有唯一分界线:
在这里插入图片描述
协方差不一致有两个分界线:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值