哈理工大学ACM程序设计全国邀请赛A Golds(网络流)

题意:有一个N(<=2000)颗节点的树,每个点有权值,你有M(<=2000)个机器人,每个机器人i可以走s[i]到t[i]这段路收集权值并且最大携带不能超过w[i],问你能获得的最大权值
思路:一眼网络流是必然的,比赛的时候想歪了一下并且读错了一下题目导致我的做法会拆出8000个点来。。。正解应该是源点S连向树上的每个节点,流量为该点权值,汇点T连向每个机器人,流量为最大采集量,然后机器人可以走哪些路径就将它连向机器人的点,跑一次最大流即可

#include<bits/stdc++.h>
using namespace std;
const int maxn = 4005;
#define INF 1e9
struct Edge
{
	int from,to,cap,flow;
	Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic
{
	int n,m,s,t;
	vector<Edge>edges;
	vector<int> G[maxn];
	bool vis[maxn];
	int d[maxn];
	int cur[maxn];
	void AddEdge(int from,int to,int cap)
	{
		edges.push_back(Edge(from,to,cap,0));
		edges.push_back(Edge(to,from,0,0));
		m = edges.size();
		G[from].push_back(m-2);
		G[to].push_back(m-1);
	}
	void init(int nn)
	{
		for (int i = 0;i<=nn;i++)
			G[i].clear();
		edges.clear();
	}
	bool BFS()
	{
		memset(vis,0,sizeof(vis));
		queue<int>q;
		q.push(s);
		d[s]=0;
		vis[s]=1;
		while (!q.empty())
		{
			int x = q.front();
			q.pop();
			for (int i = 0;i<G[x].size();i++){
				Edge &e = edges[G[x][i]];
				if (!vis[e.to] && e.cap>e.flow){
					vis[e.to]=1;
					d[e.to]=d[x]+1;
					q.push(e.to);
				}
			}
		}
		return vis[t];
	}

	int DFS(int x,int a){
		if (x==t || a==0)
			return a;
		int flow = 0,f;
		for (int &i=cur[x];i<G[x].size();i++){
			Edge&e = edges[G[x][i]];
			if (d[x]+1==d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>0){
				e.flow+=f;
				edges[G[x][i]^1].flow-=f;
				flow+=f;
				a-=f;
				if (a==0)
					break;
			}
		}
		return flow;
	}

	int Maxflow(int s,int t)
	{
		this->s=s;
		this->t=t;
		int flow = 0;
		while (BFS())
		{
			memset(cur,0,sizeof(cur));
			flow+=DFS(s,INF);
		}
		return flow;
	}
}di;
int n,m,s,t;
int a[maxn],fa[maxn],dep[maxn];
vector<int>e[maxn];
void dfs(int u,int f)
{
	for(int i= 0;i<e[u].size();i++)
	{
		int v = e[u][i];
		if(v==f)continue;
		dep[v]=dep[u]+1;
		fa[v]=u;
		dfs(v,u);
	}
}
void build()
{
	memset(dep,0,sizeof(dep));
	for(int i = 0;i<=n;i++)e[i].clear();
	di.init(n+m+3);
	s = 0;
	t = n+m+2;
    for(int i = 1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		di.AddEdge(s,i,a[i]);
	}
	for(int i = 1;i<=n-1;i++)
	{
		int u,v,w;
		scanf("%d%d",&u,&v);
		e[u].push_back(v);
		e[v].push_back(u);
	}
	dfs(1,-1);
    for(int i = 1;i<=m;i++)
	{
		int u,v,w;
		scanf("%d%d%d",&u,&v,&w);
		di.AddEdge(i+n,t,w);
		while(u!=v)
		{
			if(dep[v]>dep[u])
			{
				di.AddEdge(v,n+i,INF);
                v = fa[v];
			}
			else 
			{
				di.AddEdge(u,n+i,INF);
				u=fa[u];
			}
		}
		di.AddEdge(u,n+i,INF);
	}
}

int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
	{
		build();
		printf("%d\n",di.Maxflow(s,t));
	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值