POJ 2553 N皇后问题
Problem Description
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。 你的任务是,对于给定的N,求出有多少种合法的放置方法。
Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。
Sample Input
1 8 5 0
Sample Output
1 92 10
N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行、同一列、同一斜线上的皇后都会自动攻击)。
类似以八皇后问题(点击这里查看八皇后问题),深搜+回溯,
#include<iostream>
#include <cstdio>
#include <string.h>
#include <math.h>
using namespace std;
int ans, n;
int col[11];
void dfs(int row)
{
if (row == n)
{
ans++;
return ;
}
for (int i = 0; i < n; i++)
{
col[row] = i;
bool flag = true;
for (int j = 0; j < row; j++)
{
if (col[j] == col[row] || col[j] + j == col[row] + row || col[j] - j == col[row] - row)
{
flag = false;
break;
}
}
if (flag)
{
dfs(row + 1);
}
}
}
int main()
{
int a[11];
for (n = 1; n <= 10; n++)
{
ans = 0;
dfs(0);
a[n] = ans;
}
while(scanf("%d", &n), n)
{
cout << a[n] << endl;
}
return 0;
}