CV学习笔记

3 篇文章 0 订阅
1 篇文章 0 订阅
本文介绍了如何使用Python的OpenCV库快速处理图像掩膜,通过numpy生成mask并结合cv2.add和cv2.inRange函数,实现了ROI区域的提取和背景颜色的去除。重点讲解了RGB转HSV和inRange阈值设置的应用实例。
摘要由CSDN通过智能技术生成

python 使用opencv 对图像mask处理

参考:https://blog.csdn.net/lucky__ing/article/details/78559916

MASK图像掩膜处理
在图像操作中有时候会用到掩膜处理,如果使用遍历法掩膜图像ROI区域对于python来讲是很慢的,所以我们要找到一种比较好的算法来实现掩膜处理。
假设我们有一副图像:
在这里插入图片描述
而我们关心的区域就在这一小堆线上,想把这一堆线提取出来,我们先通过numpy生成一个mask图像:

sss=np.zeros([480,640],dtype=np.uint8) 
sss[300:350,310:400]=255

生成一个640*480大小的一个图片,填充为0,然后在300:350,310:400区域全部填充为255,这个区域就是我们的ROI区域。如下图所示:
在这里插入图片描述
图中的高亮区域就是我们需要的ROI。接下来我们使用

image=cv2.add(img0, np.zeros(np.shape(img0), dtype=np.uint8), mask=sss)

就可以生成新的掩膜处理之后的图片了。其中,imag0是我们上面的那副线的源图,sss是我们的刚才生成的mask。结果如下图所示:
在这里插入图片描述
这样我们就可以生成新的带有掩膜效果的图像了,这种方法可以用来统计ROI内的关键点。

python-opencv中的cv2.inRange函数

参考:https://blog.csdn.net/hjxu2016/article/details/77834599

本次目标是将一副图像从rgb颜色空间转换到hsv颜色空间,颜色去除白色背景部分
具体就调用了cv2的两个函数,一个是rgb转hsv的函数
具体用法

hsv = cv2.cvtColor(rgb_image, cv2.COLOR_BGR2HSV)

然后利用cv2.inRange函数设阈值,去除背景部分

  mask = cv2.inRange(hsv, lower_red, upper_red) #lower20===>0,upper200==>0,

函数很简单,参数有三个

第一个参数:hsv指的是原图

第二个参数:lower_red指的是图像中低于这个lower_red的值,图像值变为0
第三个参数:upper_red指的是图像中高于这个upper_red的值,图像值变为0
而在lower_red~upper_red之间的值变成255

lower_red = np.array([20, 20, 20])
upper_red = np.array([200, 200, 200])
mask = cv2.inRange(hsv, lower_red, upper_red) #lower20===>0,upper200==>0,lower~upper==>255

就是将低于lower_red和高于upper_red的部分分别变成0,lower_red~upper_red之间的值变成255
具体用法如下
hsv = cv2.cvtColor(rgb_image, cv2.COLOR_BGR2HSV) lower_red = np.array([20, 20, 20]) upper_red = np.array([200, 200, 200]) # mask -> 1 channel mask = cv2.inRange(hsv, lower_red, upper_red) #lower20===>0,upper200==>0
我项目中的代码如下:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值