n值贝叶斯分类器

n值贝叶斯分类器

P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) ∑ j = 1 n P ( B j ) P ( A ∣ B j ) P(B_i|A) = \frac{P(B_i)P(A|B_i)}{\sum_{j=1}^nP(B_j)P(A|B_j)} P(BiA)=j=1nP(Bj)P(ABj)P(Bi)P(ABi)

贝叶斯公式的分母都是相同的。所以判断样本属于哪类只需要比较分子部分:先验概率类条件概率,最终属于哪类的概率最大,则判别为哪类,此处为*最小错误率贝叶斯分类**,若采用最小风险需要加上判断为每个类别的风险损失值。

代码实现
github

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值