2016蓝桥杯算法训练——2的次幂表示

算法训练    2的次幂表示
问题描述
  任何一个正整数都可以用2进制表示,例如:137的2进制表示为10001001。
  将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=2^7+2^3+2^0
  现在约定幂次用括号来表示,即a^b表示为a(b)
  此时,137可表示为:2(7)+2(3)+2(0)
  进一步:7=2^2+2+2^0 (2^1用2表示)
  3=2+2^0 
  所以最后137可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
  又如:1315=2^10+2^8+2^5+2+1
  所以1315最后可表示为:
  2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
  正整数(1<=n<=20000)
输出格式
  符合约定的n的0,2表示(在表示中不能有空格)
样例输入
137
样例输出
2(2(2)+2+2(0))+2(2+2(0))+2(0)
样例输入
1315
样例输出
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
提示
  用递归实现会比较简单,可以一边递归一边输出

代码:
import java.math.BigDecimal;
import java.util.Scanner;

public class Main {

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Scanner in = new Scanner(System.in);
		int n = in.nextInt();
		fun(n);
	}

	private static void fun(int n) {
		// TODO Auto-generated method stub
		int count = 0;
		int[] a = new int[20];
		int temp, num = 0;
		while (n != 0) {
			temp = n % 2;
			if (temp == 1)
				a[num++] = count;
			count++;
			n /= 2;
		}
		for (int i = num - 1; i >= 0; i--) {
			if (a[i] == 0)
				System.out.print("2(0)");
			else if (a[i] == 1)
				System.out.print("2");
			else if (a[i] == 2)
				System.out.print("2(2)");
			else {
				System.out.print("2(");
				fun(a[i]);
				System.out.print(")");
			}
			if (i != 0)
				System.out.print("+");
		}
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值