题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4738
题目大意:
n个岛,m条桥梁(双向),每个桥梁有c个人。派人去炸一条桥梁(派去的人数必须>=桥梁上是人数才能炸),让图不连通。问至少需要派多少个人。如果无法完成任务输出-1。
第一行包含两个整数N和M,意味着有N个岛和M个桥。所有岛都从1到N编号。(2 <= N <= 1000,0 <M <= N^2)
接下来的M行描述了M个桥。每条线包含三个整数U,V和W,意味着有一个连接岛U和岛V的桥,并且在该桥上有W守卫。(U≠V且0 <= W <= 10,000)
输入以N = 0和M = 0结束。
对于每个样例,输出最小的人数。
思路:就是找到所有的割边。权值最小的割边就是人数。如果没有割边,输出-1,看到边的范围就知道有重边,要考虑重边,但还是WA了。
坑点:
1.权值为0,至少要派一个人去。
2.如果一开始是不连通的,输出0。
对重边的处理:
方法一:vector+map。
方法二:用新的存储方法。
方法一的复杂度比方法二多 m*lg(m) m:边数
方法一:280ms
#include<bits/stdc++.h>
#define p1 first
#define p2 second
using namespace std;
const int maxn=1000+5;
vector<pair<int, int> > v[maxn];
map<pair<int, int>, int> p;
int dfn[maxn];//dfs第一次的时间戳
int low[maxn];//能到达的最远祖先(时间戳最小)
int par[maxn];//每个点的父亲节点
int tot, n, m, MAX=(1<<31)-1;
void Tarjn(int x)
{
low[x]=dfn[x]=++tot;//每次dfs,x的次序号增加1
int f=0; //记录子树的数量(特别判断根节点)
for(int i=0;i<v[x].size();i++)//访问从x出发的边
{
int u=v[x][i].p1;
if(!dfn[u]) //如果u没被访问过
{
f++;
par[u]=x; //x是u的父节点
Tarjn(u); //dfs(v)
low[x]=min(low[x], low[u]);//x点和x的子树能到达的最远祖先(最小dfn)
if(low[u]>dfn[x])//桥的条件
{
if(p[{x, u}]==1)
{
MAX=min(MAX, v[x][i].p2);
}
}
}
else if(u!=par[x])//节点v已访问,则(u,v)为回边(指向其祖先的边),且不是重边
{
low[x] = min(low[x], dfn[u]);
}
}
}
int main()
{
while(scanf("%d%d",&n,&m),n*m)
{
for(int i=0;i<maxn;i++)
{
v[i].clear();
}
p.clear();
memset(dfn ,0, sizeof(dfn));
memset(low, 0, sizeof(low));
MAX=(1<<31)-1;
tot=0;
memset(par, -1, sizeof(par));
for(int i=1;i<=m;i++)
{
int x, y, z;
scanf("%d%d%d",&x,&y,&z);
p[{y, x}]++;
p[{x, y}]++;
v[x].push_back({y, z});
v[y].push_back({x, z});
}
Tarjn(1);
int k=0;
for(int i=1;i<=n;i++)
{
if(dfn[i]==0)
{
k=1;
break;
}
}
if(k)
{
cout<<0<<endl;
continue;
}
if(MAX==(1<<31)-1)
{
cout<<-1<<endl;
}
else if(MAX==0)
{
cout<<1<<endl;
}
else
{
cout<<MAX<<endl;
}
}
return 0;
}
方法二:93ms
#include<bits/stdc++.h>
using namespace std;
const int maxn=1000+5;
struct E
{
int v, w;
int next;
}e[maxn*maxn];
int cut=0, tot=0;
int dfn[maxn], low[maxn];
int head[maxn];
int n, m, MAX;
void into()
{
MAX=(1<<31)-1;
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(head, -1, sizeof(head));
cut=0, tot=0;
}
int add(int u, int v, int w)
{
e[cut].v=v;
e[cut].w=w;
e[cut].next=head[u];
head[u]=cut++;
}
void T(int u, int fa, int q)
{
dfn[u]=low[u]=++tot;
for(int i=head[u];i!=-1;i=e[i].next)
{
int v=e[i].v, w=e[i].w;
if(i==(q^1)) //消除一条反向边的影响
{
continue;
}
if(!dfn[v])
{
T(v, u, i);
low[u]=min(low[u], low[v]);
if(low[v]>dfn[u])
{
MAX=min(MAX, w);
}
}
else
{
low[u]=min(low[u], dfn[v]);
}
}
}
int main()
{
while(scanf("%d%d",&n,&m),n*m)
{
into();
for(int i=0;i<m;i++)
{
int u, v, w;
scanf("%d%d%d",&u,&v,&w);
add(u, v, w);
add(v, u, w);
}
T(1, -1, -1);
int k=0;
for(int i=1;i<=n;i++)
{
if(!dfn[i]) //原本就不连通
{
k=1;
break;
}
}
if(k)
{
cout<<0<<endl;
continue;
}
if(MAX==0) //没有人看守
{
cout<<1<<endl;
continue;
}
if(MAX==(1<<31)-1) //没有桥
{
cout<<-1<<endl;
continue;
}
cout<<MAX<<endl;
}
return 0;
}