【安装教程】MMPose安装与使用(测试HRNet与Lite-HRNet)

本文详细记录了MMPose的安装流程,并通过实验对比了HRNet和Lite-HRNet在网络推理速度上的表现。结果显示,在不同硬件环境下,两款模型的性能有所差异。

MMPose的官方文档对于怎么安装其实写得非常清楚,所以本篇文章其实相当于一个过程记录。

1.安装环境

python 3.7.6

pytorch 1.13

cuda 11.6

windows 11

2.安装mmcv

首先安装openmim

pip install -U openmim

安装完成后再使用openmim安装mmcv

mim install mmcv-full

3.安装mmpose

官方给出了两种安装模式:

  • 从源码安装(推荐):如果基于 MMPose 框架开发自己的任务,需要添加新的功能,比如新的模型或是数据集,或者使用我们提供的各种工具。

  • 作为 Python 包安装:只是希望调用 MMPose 的接口,或者在自己的项目中导入 MMPose 中的模块。

1)从源码安装需要我们从github上下载源代码:

git clone https://github.com/open-mmlab/mmpose.git
cd mmpose
pip install -r requirements.txt
pip install -v -e .
# "-v" 表示输出更多安装相关的信息
# "-e" 表示以可编辑形式安装,这样可以在不重新安装的情况下,让本地修改直接生效

2)作为 Python 包安装

直接使用pip指令即可

pip install mmpose

4.使用HRNet和Lite-HRNet验证安装

因为听说Lite-HRNet虽然浮点运算很低,但是实际运行起来并没有比HRNet快多少,所以这里运行了一下两个网络,并比较了一下推理时间。

首先需要下载两个模型的权重,下面给出两个网络的信息,这里分别下载HRNetW32_256x192(108M)的权重和LiteHRNet-18_256x192(4.82M)的权重

Arch Input Size AP AP50 AP75
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值