MMPose的官方文档对于怎么安装其实写得非常清楚,所以本篇文章其实相当于一个过程记录。
1.安装环境
python 3.7.6
pytorch 1.13
cuda 11.6
windows 11
2.安装mmcv
首先安装openmim
pip install -U openmim
安装完成后再使用openmim安装mmcv
mim install mmcv-full
3.安装mmpose
官方给出了两种安装模式:
-
从源码安装(推荐):如果基于 MMPose 框架开发自己的任务,需要添加新的功能,比如新的模型或是数据集,或者使用我们提供的各种工具。
-
作为 Python 包安装:只是希望调用 MMPose 的接口,或者在自己的项目中导入 MMPose 中的模块。
1)从源码安装需要我们从github上下载源代码:
git clone https://github.com/open-mmlab/mmpose.git
cd mmpose
pip install -r requirements.txt
pip install -v -e .
# "-v" 表示输出更多安装相关的信息
# "-e" 表示以可编辑形式安装,这样可以在不重新安装的情况下,让本地修改直接生效
2)作为 Python 包安装
直接使用pip指令即可
pip install mmpose
4.使用HRNet和Lite-HRNet验证安装
因为听说Lite-HRNet虽然浮点运算很低,但是实际运行起来并没有比HRNet快多少,所以这里运行了一下两个网络,并比较了一下推理时间。
首先需要下载两个模型的权重,下面给出两个网络的信息,这里分别下载HRNetW32_256x192(108M)的权重和LiteHRNet-18_256x192(4.82M)的权重
| Arch | Input Size | AP | AP50 | AP75 |
|---|

本文详细记录了MMPose的安装流程,并通过实验对比了HRNet和Lite-HRNet在网络推理速度上的表现。结果显示,在不同硬件环境下,两款模型的性能有所差异。
最低0.47元/天 解锁文章
824

被折叠的 条评论
为什么被折叠?



