tf.nn
tf.nn.dropout
https://www.jianshu.com/p/c9f66bc8f96c
tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None,name=None)
x:自己的训练、测试数据等
keep_prob:dropout概率
使输入tensor中某些元素变为0,其它没变0的元素变为原来的1/keep_prob大小
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
input:要做卷积的输入图像,具有**[batch, in_height, in_width, in_channels]这样的shape,注意这是一个4维的Tensor,要求类型为float32和float64其中之一。
filter:卷积核,[filter_height, filter_width, in_channels, out_channels]**,要求类型与参数input相同,注意:第三维in_channels,就是参数input的第四维。
strides:图像每一维的步长,一维的向量,长度4。
padding:卷积方式(“SAME”,“VALID”)。
use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true。
name:指定该操作的name。
返回值:结果返回feature map(tensor),shape:[batch, height, width, channels]。
tf.nn.moments(x, axes, name=None, keep_dims=False)
计算统计矩,mean 是一阶矩即均值,variance 则是二阶中心矩即方差,axes=[0]表示按列计算;