目录
6.1 背景
互相协作的进程之间有共享的数据,于是这里就有一个并发情况下,如何确保有序操作这些数据、维护一致性的问题,即进程同步。
多个进程并发访问和操作同一数据且执行结果与访问发生的特定顺序有关,称之为竞争条件。为了防止竞争条件,需要确保一次只有一个进程可以操作变量。
6.2 临界区问题
假设某个系统有n个进程{p0,p1...},每个进程有一个代码段称为临界区,在该区中进程可能改变共同变量、更新一个表或写一个文件等。这种系统的重要特征是当一个进程进入临界区,其他进程不允许在他们的临界区内执行,即没有两个进程可同时在临界区内执行。
临界资源每次只能被一个进程访问。而临界区则是能够访问临界资源的代码片段。
临界区问题是设计一个以便进程协作的协议。每个进程必须请求允许进入其临界区。实现请求的代码段称为进入区,临界区之后可以有退出区,其他代码段成为剩余区。
一个典型进程的通用结构:
do{
进入区
临界区
退出区
剩余区
}while(TRUE)
临界区问题的解答必须满足三项要求:
- 互斥:如果进程Pi在其临界区内执行,那么其他进程都不能在其临界区内执行;
- 前进:如果没有进程在其临界区内执行且有进程需进入临界区,那么只有那么不在剩余区内执行的进程可参加选择,以确定谁能下一个进入临界区;
- 有限等待: 从一个进程做出进入临界区的请求,直到该请求允许为止,其他进程允许进入其临界区内的次数有上限。
一个操作系统,在某个时刻,可同时存在有多个处于内核模式的活动进程,因此实现操作系统的内核代码,会存在竞争条件。内核开发人员有必要确保其操作系统不会产生竞争条件。
有两种方法用于处理操作系统内的临界区问题:抢占式内核与非抢占式内核。抢占式内核允许处于内核模式的进程被抢占,非抢占式内核不允许内核模式的进程被抢占。
非抢占式内核的内核数据结构基本不会导致竞争条件,因为在任一时间点只有一个进程处于内核模式。但是抢占式内核响应更快,更适合实时编程,对于抢占式内核需要认真设计以确保其内核数据结构不会导致竞争条件。
6.3 Peterson算法
Peterson算法是一种经典的基于软件的临界区问题算法,可能现代计算机体系架构基本机器语言有些不同,不能确保正确运行。
Peterson算法适用于两个进程在临界区与剩余区间交替执行,为了方便,当使用Pi时,Pj来标示另一个进程,即j=i−1。Peterson算法需要在两个进程之间共享两个数据项:
int turn; //变量turn表示哪个进程可以进入其临界区,即如果turn==i,那么进程Pi允许在其临界区内执行。
bool flag[2]; //数组flag表示哪个进程想要进入临界区,如果flag[i]为true,即Pi想进入其临界区。
进程Pi的Peterson算法
do{
flag[i]=true;
turn=j;
while( flag[j] && turn==j ); //一直等
临界区
flag[i]=false;
剩余区
}while (true)
分析:
当不存在并发时,进程 Pi 执行时,flag[ i ]=true; turn= j;但是while循环的flag[ j ]不满足,不会阻塞,进程Pi直接进入临界区。使用完资源,进程将释放资源,即:flag[ i ]=false;
当进程 Pi,Pj 并发执行,在进程Pi中flag[0]=true; turn=1; 在Pj中,flag[1]=true;turn=0;
此时flag[0]和flag[1]均为true,表示进程Pi,Pj都想进入临界区,turn的值决定了哪个进程可以进入临界区。turn虽然被写了2次,但是只会保留最后的值,只能是0或1的一个。
假设turn=0;那么对于进程 Pi 来说,turn==j的条件不满足,不阻塞,进入临界区;对于进程Pj来说,循环条件满足,阻塞。
阻塞持续到什么时候? 进程Pi退出临界区时