八、保存和加载训练模型

目录

8-1 将训练的模型参数保存

8-2 加载数据模型


8-1 将训练的模型参数保存

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data',one_hot=True)

#每个批次100张照片
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size

#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])

#定义权重和偏置值
W= tf.Variable(tf.zeros([784,10]))
b= tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W) + b)

#softmax代价函数
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#最小化损失
train_step = tf.train.AdamOptimizer(0.001).minimize(loss)

#结果存放在一个布尔型变量列表
accuracy_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
#准确率预测
accuracy = tf.reduce_mean(tf.cast(accuracy_prediction,tf.float32))

init = tf.global_variables_initializer()

saver = tf.train.Saver()

with tf.Session() as sess:
    sess.run(init)
    for epoch in range(10):
        for bacth in range(n_batch):
            batch_xs,batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
        
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print('Iter' + str(epoch) + 'Testing accuracy' + str(acc))
    saver.save(sess,'model_save/my_net.ckpt')#模型参数保存在model_save文件夹下的my_net.ckpt
Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
Iter0Testing accuracy0.8998
Iter1Testing accuracy0.9114
Iter2Testing accuracy0.9168
Iter3Testing accuracy0.9205
Iter4Testing accuracy0.9226
Iter5Testing accuracy0.9242
Iter6Testing accuracy0.9246
Iter7Testing accuracy0.9291
Iter8Testing accuracy0.9281
Iter9Testing accuracy0.9278

8-2 加载数据模型

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data',one_hot=True)

#每个批次100张照片
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size

#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])

#定义权重和偏置值
W= tf.Variable(tf.zeros([784,10]))
b= tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W) + b)

#softmax代价函数
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#最小化损失
train_step = tf.train.AdamOptimizer(0.001).minimize(loss)

#结果存放在一个布尔型变量列表
accuracy_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
#准确率预测
accuracy = tf.reduce_mean(tf.cast(accuracy_prediction,tf.float32))

init = tf.global_variables_initializer()

saver = tf.train.Saver()

with tf.Session() as sess:
    sess.run(init)
    print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))#没有训练模型的准确率预测
    saver.restore(sess,'model_save/my_net.ckpt')
    print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))#加载模型后的准确率预测
   
Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
0.098
INFO:tensorflow:Restoring parameters from model_save/my_net.ckpt
0.9278

 

 

说明:1.关于tensorflow的代码是参考了b站练数成金的代码,链接地址:https://www.bilibili.com/video/av20542427/?p=1

           2.部分代码还参考了tensorflow中文社区的网站,以及tensorflow的官网(需要梯子)。

           tensorflow中文社区的网站:http://www.tensorfly.cn/

   MNIST_data手写数据集下载:链接:https://pan.baidu.com/s/1_PxLxxZ4YP7KfDzZh8vPFA 密码:nyrs

   更多Tensorflow资源下载,去github搜索Tensorflow下载更多demo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值