spark实现itemcf-附scala代码

本文探讨了在Spark上应用协同过滤(ItemCF)算法的详细过程,包括算法本质、cos距离计算方法以及具体操作步骤。通过计算用户对商品的评分向量之间的cos距离,寻找用户之间的相似性。感兴趣的读者可联系作者zhaoliang19960421@outlook.com获取更多详情。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文记录了在spark上协同过滤算法的相关内容,如果有做相关工作的同学,可以邮件与我联系 zhaoliang19960421@outlook.com

本文参考了spark协同过滤,在此表示感谢

协同过滤算法的本质是在全局范围内统计用户的行为,对每个行为进行打分记录,找到行为最相似的两人或者所有人的行为最相似的两个物品。具体的协同过滤的过程如下图所示
在这里插入图片描述
其中cos距离的计算方式如下图所示
在这里插入图片描述

具体的操作方式如下( 以用户的协同过滤为例):

  1. 在全局范围对,每个用户对每个商品进行打分(对于不同的行为可以给与不同的分值,代表不同的权重)
  2. 每一个用户用一个向量来表示,向量长度是商品个数,然后对于用户而言两两计算cos距离
    1. 分母是每个向量的模长, 每个用户的向量模长,依次计算即可
    2. 在计算cos的分子时,当且仅当两个向量在对应位置上都有值时才有结果
    3. 那么仅计算每个商品都有打分的商品即可,即对于每个用户而言,以商品为主键进行join,得到两两用户之间都有行为的商品,依次相乘求和后,即可得到cos的分子(做上三角取值,因为用户两两join会出现,AB、BA 两行数据)
    4. 在获得两两用户之间的cos分子,分别join每个用户的向量模型,做除法得到两个用户之间的cos距离
  3. 得到的两个用户之间的距离的dataframe保存在hdfs中后续使用
package analysis.theme

import breeze.numerics.{
   pow, sqrt}
import conf.DateUtil.getFrontDay
import org.apache.spark.sql.{
   DataFrame, SaveMode, SparkSession}
import org.apache.spark.sql.expressions.UserDefinedFunction
import org.apache.spark.sql.functions._

/**
 * @author zhaoliang6@xiaomi.com on 20210506
 *         基于用户行为的协同过滤算法
 */
object UserItemCF {
   
    def main(args: Array[String]): Unit = {
   
        val spark: SparkSession = new SparkSession.Builder().appName(this.getClass.getSimpleName).getOrCreate()
        val Array(startDate: String, endDate: String, savePath: String) = args
        val userItemScoreDf = getUserItemScoreDf(spark, startDate, endDate)
        val itemCFDf = calcuate(spark, userItemScoreDf, Array("imei", "product_id", "score"), "item")
        itemCFDf.write.mode(SaveMode.Overwrite).save(savePath)
		val simItemDf = exp_itemCF(spark)
    }

    /**
    * 获得用户-商品-得分 矩阵,其中不同的动作获得得分不同
    */
    def Action2ScoreUDF(scoreMap: Map[String, Int]): UserDefinedFunction = udf((action: String) => scoreMap.getOrElse(action, 0))
    def getUserItemScoreDf(sparkSession: SparkSession, startDate: String, endDate: String): DataFrame = {
   
        val scoreMap: Map[String
本套大数据热门技术Spark+机器学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程中基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求中抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark机器学习、朴素贝叶斯算法、企业级实战案例等。通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战中对Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。Spark应用场景Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等。淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等。腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。本套大数据热门技术Spark+机器学习+贝叶斯算法共计13季,本套为第12季。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值