hdu 5690 All X(快速幂)

All X

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1077    Accepted Submission(s): 511


Problem Description
F(x,m)  代表一个全是由数字 x 组成的 m 位数字。请计算,以下式子是否成立:

F(x,m) mod k  c
 

Input
第一行一个整数 T ,表示 T 组数据。
每组测试数据占一行,包含四个数字 x,m,k,c

1x9  

1m1010

0c<k10,000
 

Output
对于每组数据,输出两行:
第一行输出:"Case #i:"。 i 代表第 i 组测试数据。
第二行输出“Yes” 或者 “No”,代表四个数字,是否能够满足题目中给的公式。
 

Sample Input
  
  
3 1 3 5 2 1 3 5 1 3 5 99 69
 

Sample Output
  
  
Case #1: No Case #2: Yes Case #3: Yes
solution;
m个x组成的数=(10^m-1)/9*x,然后再运用X==Y(mod k)等价于X*c==Y*c(mod k*c)
#include<cstdio>
using namespace std;
typedef long long ll;
ll pow(ll n, ll mod)
{
    ll a=10,ans = 1;
    while (n)
    {
        if (n & 1)ans = (ans*a) % mod;
        a = (a*a) % mod;
        n >>= 1;
    }
    return ans;
}
int main()
{
    int t, n, k, c,ca=1;
    long long m;
    scanf("%d", &t);
    while (t--)
    {
        scanf("%d%I64d%d%d", &n, &m, &k, &c);
        k *= 9; c *= 9;
        ll ans = ((pow(m,k)-1)*n+k)%k;
        printf("Case #%d:\n", ca++);
        if (ans == c)printf("Yes\n");
        else printf("No\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值