最近我一直投入于产业知识图谱的开发,国内的Nebula图数据库也有所涉猎。
同时,我也在深入研究和应用大型模型,逐步将其用于实际生产环境。
知识注入、提示词(prompt)以及微调技术,
并且正在处理一些大模型的定制化项目,目前正在洽谈中,希望能成功将这些大型模型代理应用于实际业务中。
一、基本概念:
GPT(Generative Pre-trained Transformer),即生成式预训练变换器。
生成式:内容是实时生成的。
预训练:模型在训练前已经学习了大量数据。
模型:基于算法构建。
误解:ChatGPT是搜索引擎?
事实上,ChatGPT并非搜索引擎,它通过分析提供的上下文信息来实时生成文字,能够创造出原本不存在的文本,而搜索引擎仅从数据库中检索已有信息。搜索引擎提供的是精确查询结果,而生成式语言模型则可能包含创新性或误导性的内容。
ChatGPT:在GPT的基础上进行了特别的微调,以增强其对话交互能力。
Prompt:一种用自然语言指引用户与机器互动的技术。
二、GPT的工作原理:
本质上是通过单词接龙,模型会根据前一词预测下一个词。
如何进行预测?
将数据进行向量化,计算其概率分布,GPT据此可以根据上文预测下一个可能的词。这也是为什么每次ChatGPT的回答都可能不同的原因。
注意:这些数据可以是文本、语音、视频或像素等。
任何形式的数据都可以被向量化。例如,人可以通过身高、体重和籍贯向量化为[11, 22, 33],在多维空间中形成一个点。
数据向量化后,形成了空间中的概率分布图,点密集的地方表明某个数据出现频率高。
通过这种方法,长文章可以通过单字接龙的自回归生成。
什么是自回归生成?
将生成的数据连续使用,通过迭代生成新的输出,直到触发结束条件。例如,输入“我”,希望ChatGPT能生成一句完整的句子。
例如,当你输入:“这门课是”,ChatGPT会计算下一个词的概率,然后根据设定的温度参数进行抽样,可能会生成:“这门课是神经网络中的transformer机制”。
三、大模型的学习步骤:
1. 通过大量数据学习人类的语义和语法规则(开放式学习)。
2. 调整GPT模型参数,确保输出符合期望(规范化学习)。
3. 增强GPT的创新性,避免回答过于机械(创新性引导)。
总结:GPT模型在大规模语料库上训练,学习构建句子的基本结构和语法,在微调后可执行对话生成、文本摘要等任务。