自适应权重的交叉熵计算

在类别不平衡的数据集上,采用自适应权重方法可以有效提升模型性能。此方法基于样本比例动态调整类别权重,实验证明,相较于固定权重,F1分数从95%提升至96%以上。使用PyTorch接口实现,通过调整损失函数中的权重参数,适用于实时语义分割等任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在训练集中类别不平衡的情况下,可对不同类别赋予不同的权重。有采用固定权重,也有实时计算权重。

在这里,介绍一种自适应权重的计算方法,参考论文《ENet: A Deep Neural Network Architecture for Real-time Semantic Segmentation》。

对类别的权重定义如下:

w_{class} = \frac{1}{ln(c + p_{class})}

其中,c是一个超参数,设为1.02,p_{class}是该类样本所占的比例。最后,将w_{class}限制在[1.0,50]的范围内。

本人实验中,在类别不平衡的情况下(达到了30:1),在一个batch内,采用上述公式计算类别权重,与固定权重相比,最终的F1从百分之九十五点几上升到百分之九十六点几。

用pytorch接口

loss = F.cross_entropy(logits,gt,weight=weight)

其中,weight为上述公式计算出来的权重。

(PS:以此记录,便于查阅)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值