视觉里程计
文章平均质量分 58
放牛娃子
尽量上干货,少说废话,不混篇幅
展开
-
四元素定义、运算、插值、与欧拉角之间的转换
在3D图形学中,最常用的旋转表示方法便是四元数和欧拉角,比起矩阵来具有节省存储空间和方便插值的优点。本文主要归纳了两种表达方式的转换,计算公式采用3D笛卡尔坐标系:定义、、分别为绕Z轴、Y轴、X轴的旋转角度,如果用Tait-Bryan angle表示,分别为Yaw、Pitch、Roll。一、四元数的定义通过旋转轴和绕该轴旋转的角度可以构造一个四元数:其中是绕旋转轴旋转的角度,为旋转轴在x,y,z方向的分量(由此确定了旋转轴)。二、欧拉角到四元数的转换三、四元数..原创 2021-07-08 15:05:17 · 7982 阅读 · 0 评论 -
无监督深度学习SLAM——Moving SLAM
Moving SLAM: Fully Unsupervised Deep Learning in Non-Rigid Scenes摘要作者提出了一种可无监督训练的深度学习网络,该网络输入视频流,输出3D场景信息(camera 和depth)、运动目标及其运动信息。传统的SLAM存在一个强假设:目标是静止的。这种刚性场景假设限制了模型预测的性能。作者提出了一种简单的解决方案:将图像的局部区域作为刚性场景,对每个区域,预测不同的pose,计算不同区域的误差,进而优化网络参数。对于每个区域,预测一个6D的原创 2021-05-06 15:04:52 · 517 阅读 · 0 评论 -
卡尔曼滤波之观测值的似然估计
在工程活动中运用KF或者EKF,常常需要判断当前观测值的可靠程度。若用一个不太可靠的观测值更新模型,往往会产生不太好的结果。 那么,有没有一种方式,用来评估观测值对于模型是否可靠呢?答案:有。 以卡尔曼滤波为例。首先回顾一下卡尔曼滤波的5个方程。如下图所示。给定观察值Z。似然估计值的计算方式如下:其中,,如下图中绿框所示。. 如下图红框标记所示。C++代码:用opencv实现,变量Sk(上图红框的值)、i_k(上图绿框的值)、Sk_inv(为Sk...原创 2021-01-08 17:40:43 · 1278 阅读 · 2 评论 -
无监督深度估计、运动估计的深度学习方法(一)
摘要旨在总结无(自)监督深度学习depth、ego-motion和obj-motion的估计方法。在这个领域,在本人的调研中,有几篇比较有代表性的文章,罗列如下。paper listmonodepth2(2019), code自监督训练深度估计网络,可选配单目、立体视觉,或者单目与立体视觉结合的自监督训练。训练框架有两个深度神经网络,一个采用UNet预测深度,另一个输入2张RGB图像,即input的通道数为6,预测这两张图像的相对姿态pose。训练大致流程:预测深度和po原创 2020-11-23 13:58:18 · 2704 阅读 · 0 评论 -
无监督深度估计、运动估计的深度学习方法(二)——SSIM损失函数
在自监督深度估计中,一般输入2张图像(若为视频,则输入邻近的两帧图像)frame1和frame2,模型先估计相机拍摄这2张图像是的姿态变化pose,然后根据pose将frame1变换到frame2的视角下,得到合成图像synthetic frame1。估算的pose越准确,synthetic frame1与frame2的图像相似度就越高。那么,常用SSIM(结构相似性)来评价这两张图片的相似度。若希望详细了解单目深度估计,可参考文章《无监督深度估计、运动估计的深度学习方法(一)...原创 2020-12-09 10:06:05 · 2102 阅读 · 0 评论 -
D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry
论文地址:https://arxiv.org/pdf/2003.01060.pdf参考文献:https://blog.csdn.net/qq_26623879/article/details/104889488原创 2020-09-11 17:30:28 · 480 阅读 · 0 评论