论文地址:https://arxiv.org/abs/2007.12147
目前学术界已经有大量用于车道线检测的深度学习方法,但是,针对弯道车道线,大多数方法的效果并不算太好。CurveLane-NAS旨在解决弯道车道线检测问题,从网络搜索的角度,针对长条形车道线,捕捉车道线全局的连贯性特征和局部的弯曲特征。网络模型主要由三部分组成:
a、Elastic Backbone Search Module,有效提取车道线的语义特征和隐藏特征;
b、Feature Fusion Search Module,充分融合不同尺度的全局和局部特征;
c、Adaptive Point Blending Search Module,一种多尺度后处理策略,根据不同尺度的预测结果,得到一个更为准确的车道线检测结果。
数据集有100k训练图片,仅标注了车道线形状,未标注车道线类型。
利用代码解析后,图片如下: