车道线检测之CurveLane-NAS

论文地址:https://arxiv.org/abs/2007.12147

目前学术界已经有大量用于车道线检测的深度学习方法,但是,针对弯道车道线,大多数方法的效果并不算太好。CurveLane-NAS旨在解决弯道车道线检测问题,从网络搜索的角度,针对长条形车道线,捕捉车道线全局的连贯性特征和局部的弯曲特征。网络模型主要由三部分组成:

a、Elastic Backbone Search Module,有效提取车道线的语义特征和隐藏特征;

b、Feature Fusion Search Module,充分融合不同尺度的全局和局部特征;

c、Adaptive Point Blending Search Module,一种多尺度后处理策略,根据不同尺度的预测结果,得到一个更为准确的车道线检测结果。

数据集

数据集有100k训练图片,仅标注了车道线形状,未标注车道线类型。

利用代码解析后,图片如下:

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值