Bert压缩:《Distilling Task-Specific Knowledge from BERT into Simple Neural Networks》

前言:最近在想办法压缩有rnn的网络,所以查看了这篇文章

出处:University of Waterloo(滑铁卢大学)

代码:https://github.com/qiangsiwei/bert_distill

论文:https://arxiv.org/pdf/1903.12136.pdf

Abstract

本文作者认为轻量级基础网络在没有进行网络结构更改,额外的训练数据或额外特征以外,依然可以具备很强的竞争能力。作者就提出了使用BERT-大模型对BiLSTM进行蒸馏,得到的结果是与BERT相比,参数少了近100倍,推理时间提升了15倍;

结论:该文的方法不进行详细的描述,总言之,作者在预测得分层使用了欧式距离进行了蒸馏,并使用了teacher网络对未知标签的数据进行预测,然后将这部分未知标签的数据用于了小模型的蒸馏,实际结果就是小模型的性能是得到了提升,但是(个人觉得)不知道是蒸馏起了作用,还是因为新添了数据所以小模型性能得到了提升;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫猫与橙子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值