使用Hog特征进行字母和数字的分类

目的:使用字母数字的二值图像,进行识别:

整体思路:

1)对图像进行预处理;

对收集的单个字符进行二值化,进行数据均衡,并且将所有的字符图片直接resize为20*20(有过进行等比例缩放后padding为20*20,最终算法效果较差)

2)提取hog特征

3)进行svm(lightGBM)分类

查阅的资料:

使用python代码,提取相关的hog特征:

 参数设置:pythonscikit-image库HOG提取特征(参数解释) - 百度文库

本人使用的hog特征提取代码:

def get_hog():
    """ Get hog descriptor """

    # cv2.HOGDescriptor(winSize, blockSize, blockStride, cellSize, nbins, derivAperture, winSigma, histogramNormType,
    # L2HysThreshold, gammaCorrection, nlevels, signedGradient)
    hog = cv2.HOGDescriptor((SZ, SZ), (8, 8), (4, 4), (8, 8), 9, 1, -1, 0, 0.2, 1, 64, True)
    print("get descriptor size: {}".format(hog.getDescriptorSize()))
    return hog

def get_data(train_data_path, train_dir, result_num):
    '''
    加载训练样本
    :param train_data_path:
    :param result_num:
    :return:
    '''
    hog = get_hog()
    # 识别中文
    # ------加载训练样本
    chars_train = []
    chars_train_label = []
    files = get_file_list(train_data_path)  # 获取所有图片的绝对路径
    files2 = get_file_list(train_dir)  # 获取所有图片的绝对路径
    files += files2
    for filepath in files:
        digit_img = cv2.imread(filepath)
        digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
        chars_train.append(hog.compute(deskew(digit_img)))
        # chars_train.append(preprocess_hog(deskew(digit_img)))
        classTag = result_num[filepath.split("/")[-2]]  # 得到 类标签(数字)
        chars_train_label.append(classTag)

    # chars_train = np.squeeze(chars_train)
    chars_train = np.squeeze(np.float32(chars_train))
    chars_label = np.array(chars_train_label)
    return chars_train, chars_label

 使用SVM进行分类的代码:

class SVM(StatModel):
    def __init__(self, C = 1, gamma = 0.5):
        self.model = cv2.ml.SVM_create()
        self.model.setGamma(gamma)
        self.model.setC(C)
        self.model.setKernel(cv2.ml.SVM_RBF)
        # self.model.setKernel(cv2.ml.SVM_LINEAR)
        self.model.setType(cv2.ml.SVM_C_SVC)
        # 定义算法终止条件
        # self.model.setTermCriteria((cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 500, 1e-6)) #迭代次数超过阈值max_iter时停止,#cv2.TERM_CRITERIA_COUNT |

    # train svm
    def train(self, samples, responses):
        self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)

    def predict(self, chars_test):
        r = self.model.predict(chars_test)
        # result = r[1].ravel()
        return r

    # inference
    def predict_svm(self, test_imgList, tcName, model_path, c, g):
        self.model = SVM(C=c, gamma=g)
        if os.path.exists(model_path):
            self.model.load(model_path)
            # cv2.ml.SVM_load("svmtest.mat")
            # self.model = joblib.load(model_path)
        else:
            print('model_path is missing!')

        allErrCount = 0
        class_num = 37
        ErrCount = np.zeros(class_num, int)
        TrueCount = np.zeros(class_num, int)

        for chars_test, chars_test_label, index in test_imgList:
            # print(chars_test.shape, index)
            first = time.time()
            r = self.predict(chars_test)
            end = time.time()
            print("Testing one pic spent {:.6f}s.".format((end - first)/len(chars_test)))
            result = r[1].ravel()
            # for x in result:
            #     if x != index:
            #         print('pred error:', result_index[index], result_index[x])

            errCount = len([x for x in result if x != index])
            ErrCount[index] = errCount
            TrueCount[index] = len(chars_test_label) - errCount
            print("errorCount: {}.".format(errCount), "trueCount: {}.".format(len(chars_test_label) - errCount))
            allErrCount += errCount

        # tet = time.time()
        # print("Testing All class total spent {:.6f}s.".format(tet - tst))
        print("All error Count is: {}.".format(allErrCount))

        print("number", " TrueCount", " ErrCount")
        mean_acc = 0
        num_div = 0
        for tcn in tcName:
            # tcn = int(tcn)

            # if all_num > 0:
            num_div += 1
            index = result_num[tcn]
            all_num = (TrueCount[index] + ErrCount[index])
            acc = TrueCount[index] /all_num
            mean_acc += acc
            print(tcn, "     ", TrueCount[index], "      ", ErrCount[index], 'acc:', acc)
        mean_acc /= class_num
        return mean_acc
        # plt.figure(figsize=(12, 6))
        # x = list(range(37))
        # plt.plot(x, TrueCount, color='blue', label="TrueCount")  # 将正确的数量设置为蓝色
        # plt.plot(x, ErrCount, color='red', label="ErrCount")  # 将错误的数量为红色
        # plt.legend(loc='best')  # 显示图例的位置,这里为右下方
        # plt.title('Projects')
        # plt.xlabel('number')  # x轴标签
        # plt.ylabel('count')  # y轴标签
        # plt.xticks(np.arange(37), list(tcName))
        # plt.show()

        # inference




    def train_svm(self, chars_train, chars_label, c, g):
        #识别英文字母和数字
        self.model = SVM(C=c, gamma=g)
        self.model.train(chars_train, chars_label)
        # joblib.dump(self.model.model, path)
        return self.model


    def save_trainmodel(self, path):
        if not os.path.exists(path):
            self.model.save(path)

            # joblib.dump(self.model, path)
        # if not os.path.exists("./train_dat/svmchinese.dat"):
        #     self.modelchinese.save("./train_dat/svmchinese.dat")

调用svm分类,并且进行最优参数查找:

    best_score = 0
    best_parameters = {'gamma': 0.001, 'C': 0.001}
    for g in [0.001, 0.01, 0.1, 1, 10, 100]:
        for c in [0.001, 0.01, 0.1, 1, 10,   100]:
            # if g in [100]:
            #     continue
            if g == 0.01 and c == 0.001:
                continue
            model_path = os.path.join(model_path_save, 'svm_hog20221123_'+'_g_' +str(g)+'_c_' +str(c)+'.dat')
            svm_model = SVM(C=c, gamma=g) #12.5

            svm_model.train_svm(chars_train, chars_label, c, g)
            svm_model.save_trainmodel(model_path)

            acc = svm_model.predict_svm(test_imgList, tcName, model_path, c, g)
            print('c:', c, 'gamma:', g, 'MEANacc:', acc)
            print('============================================')
            if acc > best_score:  # 找到表现最好的参数
                best_score = acc
                best_parameters = {'gamma': g, 'C': c}
    print('best_score:', best_score, 'best_parameters:', best_parameters)

使用lightGBM分类

import lightgbm as lgb
    import datetime
    import sklearn
    # import warnings
    # warnings.filterwarnings('ignore')
    # folds = KFold(n_splits=5, shuffle=True, random_state=1996)

    # 模型参数设定
    model = lgb.LGBMClassifier(boosting_type='gbdt' #'dart' #'goss' #学习器类型,通常选取gbdt
                               , class_weight=None
                               , colsample_bytree=1.0
                               , importance_type='split'
                               , learning_rate=0.1
                               , max_depth=5 # *   指定了每棵树的最大深度或者它能够生长的层数上限,数据量小,4-10都无所谓。
                               , min_child_samples=20
                               , min_child_weight=0.001
                               , min_split_gain=0.0
                               , n_estimators=200#迭代次数
                               , n_jobs=2
                               , num_leaves=31 # * 用来设置组成每棵树的叶子的数量,由于lightGBM是leaves_wise生长,官方说法是要小于2^max_depth
                               , objective='multi:softmax'
                               , random_state=None
                               , reg_alpha=0.0
                               , reg_lambda=0.0
                               , silent=True
                               , subsample=1.0
                               , subsample_for_bin=255)
    '''
    n_estimators:拟合的树的棵树,相当于训练轮数 
    n_jobs:并行运行多线程核心数

    '''
    # model.fit(pca_feats, chars_label, eval_set=[(pca_feats, chars_label), (test_imgs, test_labels)],
    #           eval_metric=['logloss'], verbose=True) #
    model.fit(chars_train, chars_label, eval_set=[(chars_train, chars_label), (test_imgs, test_labels)],
              eval_metric=['logloss'], early_stopping_rounds=20, verbose=True)  # early_stopping_rounds=20,

    # lgb.LGBMClassifier(n_estimators=200, n_jobs=1, objective='multi:softmax')
    model_path = "/home/fuxueping/4tdisk/data/certificate_reader/传统算法处理mrz/GBM_model/model.txt"
    # model.booster_.savemodel(model_path)
    joblib.dump(model, model_path)

    start = time.time()
    # model = joblib.load(model_path)
    pred_y_test = model.predict(test_imgs)

数据样例:

 

最终未解决的问题:O和0无法分类正确,错误率很高;

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
HOG特征提取和SVM分类是常用的目标检测和图像分类方法之一。下面是使用MATLAB进行HOG特征提取和SVM分类的基本步骤: 1. 加载数据集并进行预处理:首先,加载训练数据和测试数据,并将它们转换为合适的格式。例如,如果您使用的是图像数据集,则需要将图像转换为灰度图像,并将其大小调整为相同的大小。 2. 提取HOG特征使用MATLAB的“extractHOGFeatures”函数从每个图像中提取HOG特征。该函数接受图像作为输入,并返回一个向量,该向量包含图像的HOG特征。 3. 训练SVM分类器:使用MATLAB的“fitcsvm”函数训练SVM分类器。该函数接受HOG特征向量作为输入,并使用训练数据来训练分类器。 4. 测试SVM分类器:使用MATLAB的“predict”函数测试SVM分类器。该函数接受HOG特征向量作为输入,并返回分类器对该向量的分类结果。 以下是一个简单的MATLAB代码示例,用于演示如何使用HOG特征提取和SVM分类: ``` % 加载数据集 trainData = load('trainData.mat'); testData = load('testData.mat'); % 提取HOG特征 trainFeatures = extractHOGFeatures(trainData.images); testFeatures = extractHOGFeatures(testData.images); % 训练SVM分类器 svmClassifier = fitcsvm(trainFeatures, trainData.labels); % 测试SVM分类器 predictions = predict(svmClassifier, testFeatures); ``` 请注意,以上代码仅提供了一个基本示例,并且需要根据您的具体数据集和需求进行修改和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫猫与橙子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值