yolov5数据增强避免目标残缺的代码处理

在训练YOLOv5小目标检测模型时,数据增强可能导致目标区域残缺,尤其对文字目标影响显著,造成模型误检。通过修改`utils/datasets.py`和`utils/augmentations.py`中的代码,对增强后的数据进行适配性处理,以避免目标残缺的问题。
摘要由CSDN通过智能技术生成

在训练小目标检测的时候,yolov5数据常用的增强会导致目标残缺,特别是对文字目标进行检测的时候,增强导致文字目标残缺后,训练出的模型常常会出现误检,将部分笔画检测出文字;所以就对目标中的数据增强后的结果做了合适的处理:

替换代码包括(utils/datasets.pyutils/datasets.py line 755):

    #---原始代码--begin
#     for x in (labels4[:, 1:], *segments4):
#         np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
    #----end
    
    #---新的代码:fxp begin
    width_ = 2*s
    img4, labels4 = selected_elements_func_x(img4, labels4, width
### 回答1: 如果数据有严重延迟或残缺,可以考虑以下处理方法: 1. 等待数据更新:如果数据延迟较小,可以等待一段时间,让数据更新完整。 2. 补全数据:如果数据残缺,可以尝试寻找其他来源的数据,或者通过插值算法等方法来补全数据。 3. 剔除异常值:如果数据中存在异常值,可以考虑将其剔除,以避免对分析结果产生影响。 4. 重新采集数据:如果以上方法都无法解决问题,可以考虑重新采集数据,以确保数据的完整性和准确性。 总之,处理数据时需要综合考虑数据的特点和实际情况,选择合适的方法来处理数据。 ### 回答2: 数据严重延迟或残缺数据分析带来不便和困扰,但我们可以采取一些方法来处理这些问题。 对于数据的严重延迟,我们可以考虑以下几个方面来处理。首先,我们可以尝试改善数据来源的及时性,例如与数据提供方沟通,制定更加紧密的数据上传或更新时间表,以便及时获取最新数据。其次,我们可以尝试使用数据缓存技术,将数据存储在缓存中,并定期更新缓存,以便提高系统响应速度。另外,我们还可以通过并发处理、分布式处理等技术来提高数据处理的速度,从而减少延迟。 对于数据残缺,我们可以借助一些数据清洗和填充的技术来完善数据。首先,我们可以采用相关算法和模型来对残缺数据进行预测和补充,以得到相对完整的数据集。其次,我们可以利用数据清洗工具来去除掉无效或重复的数据,使得数据集更加干净和可靠。此外,我们还可以通过人工审核和对比,对残缺数据进行修复和调整,以确保数据的准确性和完整性。 总之,对于数据严重延迟或残缺的情况,我们可以通过技术手段和数据处理方法来进行处理,以提供更加可靠和有效的数据分析结果。同时,我们也需要与数据提供方保持良好的沟通和合作,共同解决数据质量问题,为数据分析提供更强的支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫猫与橙子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值