使用三行代码便能玩转数据可视化包括线图、柱状图、饼状图,并且还附带热力图、雷达图、水球图、河流图等,以下附完整代码。
三行代码玩转数据可视化-pyechart应用
In [1]:
#数据准备-确定时间
date ='20190403'
#获取当天申万一级银行的所有股票
stock_list1= get_industry_stocks('S48',date)
#获取市盈率和市净率数据
q = query(
factor.symbol,
factor.date,
factor.pe_ttm,
factor.pb
).filter(
factor.symbol.in_(stock_list1),
factor.date==date)
df = get_factors(q)
#股票名称,数据保留2位小数
df['name'] = df['factor_symbol'].apply(lambda x:get_security_info(x).display_name)
df['factor_pe_ttm'] =round(df['factor_pe_ttm'],2)
df['factor_pb'] =round(df['factor_pb'],2)
#数据排序
df = df.sort_values(by='factor_pe_ttm')
#提取股票名、PE_ttm、PB三列数据
stocklist = list(df['name'])
pe_ttm = list(df['factor_pe_ttm'])
pb = list(df['factor_pb'])
In [2]:
from pyecharts import Bar
bar = Bar("银行业估值指标",'市盈率+市净率')
bar.add('PE_ttm', stocklist, pe_ttm,mark_point=["max",'min'],mark_line=["average"])
bar.add('PB', stocklist, pb,)
Out[2]:
In [3]:
from pyecharts import Line
line = Line("银行业估值指标",'市盈率')
line.add("市盈率-PE_ttm", stocklist, pe_ttm,mark_point=["max",'min'],mark_line=["average"])
Out[3]:
In [4]:
from pyecharts import Pie
pie = Pie("银行业估值指标",'市盈率')
pie.add("pe_ttm", stocklist, pb, is_legend_show=False,is_label_show=True)
Out[4]:
In [5]:
import random
from pyecharts import HeatMap
x_axis = [
"12a", "1a", "2a", "3a", "4a", "5a", "6a", "7a", "8a", "9a", "10a", "11a",
"12p", "1p", "2p", "3p", "4p", "5p", "6p", "7p", "8p", "9p", "10p", "11p"]
y_axis = [
"Saturday", "Friday", "Thursday", "Wednesday", "Tuesday", "Monday", "Sunday"]
data = [[i, j, random.randint(0, 100)] for i in range(24) for j in range(7)]
heatmap = HeatMap()
heatmap.add(
"热力图直角坐标系",
x_axis,
y_axis,
data,
is_visualmap=True,
visual_text_color="#000",
visual_orient="horizontal",
)
heatmap
Out[5]:
In [6]:
from pyecharts import Kline
v1 = [[2320.26, 2320.26, 2287.3, 2362.94], [2300, 2291.3, 2288.26, 2308.38],
[2295.35, 2346.5, 2295.35, 2345.92], [2347.22, 2358.98, 2337.35, 2363.8],
[2360.75, 2382.48, 2347.89, 2383.76], [2383.43, 2385.42, 2371.23, 2391.82],
[2377.41, 2419.02, 2369.57, 2421.15], [2425.92, 2428.15, 2417.58, 2440.38],
[2411, 2433.13, 2403.3, 2437.42], [2432.68, 2334.48, 2427.7, 2441.73],
[2430.69, 2418.53, 2394.22, 2433.89], [2416.62, 2432.4, 2414.4, 2443.03],
[2441.91, 2421.56, 2418.43, 2444.8], [2420.26, 2382.91, 2373.53, 2427.07],
[2383.49, 2397.18, 2370.61, 2397.94], [2378.82, 2325.95, 2309.17, 2378.82],
[2322.94, 2314.16, 2308.76, 2330.88], [2320.62, 2325.82, 2315.01, 2338.78],
[2313.74, 2293.34, 2289.89, 2340.71], [2297.77, 2313.22, 2292.03, 2324.63],
[2322.32, 2365.59, 2308.92, 2366.16], [2364.54, 2359.51, 2330.86, 2369.65],
[2332.08, 2273.4, 2259.25, 2333.54], [2274.81, 2326.31, 2270.1, 2328.14],
[2333.61, 2347.18, 2321.6, 2351.44], [2340.44, 2324.29, 2304.27, 2352.02],
[2326.42, 2318.61, 2314.59, 2333.67], [2314.68, 2310.59, 2296.58, 2320.96],
[2309.16, 2286.6, 2264.83, 2333.29], [2282.17, 2263.97, 2253.25, 2286.33],
[2255.77, 2270.28, 2253.31, 2276.22]]
kline = Kline("K 线图示例")
kline.add("指数日K", ["2017/7/{}".format(i + 1) for i in range(31)], v1)
kline
Out[6]:
In [7]:
from pyecharts import Radar
schema = [
("销售", 6500), ("管理", 16000), ("信息技术", 30000),
("客服", 38000), ("研发", 52000), ("市场", 25000)
]
v1 = [[4300, 10000, 28000, 35000, 50000, 19000]]
v2 = [[5000, 14000, 28000, 31000, 42000, 21000]]
radar = Radar()
radar.config(schema)
radar.add("预算分配", v1, is_splitline=True, is_axisline_show=True)
radar.add("实际开销", v2, label_color=["#4e79a7"], is_area_show=False,
legend_selectedmode='single')
radar
Out[7]:
In [8]:
from pyecharts import Scatter
v1 = [10, 20, 30, 40, 50, 60]
v2 = [10, 20, 30, 40, 50, 60]
scatter = Scatter("散点图示例")
scatter.add("A", v1, v2)
scatter.add("B", v1[::-1], v2)
scatter
Out[8]:
In [9]:
from pyecharts import ThemeRiver
data = [
['2015/11/08', 10, 'DQ'], ['2015/11/09', 15, 'DQ'], ['2015/11/10', 35, 'DQ'],
['2015/11/14', 7, 'DQ'], ['2015/11/15', 2, 'DQ'], ['2015/11/16', 17, 'DQ'],
['2015/11/17', 33, 'DQ'], ['2015/11/18', 40, 'DQ'], ['2015/11/19', 32, 'DQ'],
['2015/11/20', 26, 'DQ'], ['2015/11/21', 35, 'DQ'], ['2015/11/22', 40, 'DQ'],
['2015/11/23', 32, 'DQ'], ['2015/11/24', 26, 'DQ'], ['2015/11/25', 22, 'DQ'],
['2015/11/08', 35, 'TY'], ['2015/11/09', 36, 'TY'], ['2015/11/10', 37, 'TY'],
['2015/11/11', 22, 'TY'], ['2015/11/12', 24, 'TY'], ['2015/11/13', 26, 'TY'],
['2015/11/14', 34, 'TY'], ['2015/11/15', 21, 'TY'], ['2015/11/16', 18, 'TY'],
['2015/11/17', 45, 'TY'], ['2015/11/18', 32, 'TY'], ['2015/11/19', 35, 'TY'],
['2015/11/20', 30, 'TY'], ['2015/11/21', 28, 'TY'], ['2015/11/22', 27, 'TY'],
['2015/11/23', 26, 'TY'], ['2015/11/24', 15, 'TY'], ['2015/11/25', 30, 'TY'],
['2015/11/26', 35, 'TY'], ['2015/11/27', 42, 'TY'], ['2015/11/28', 42, 'TY'],
['2015/11/08', 21, 'SS'], ['2015/11/09', 25, 'SS'], ['2015/11/10', 27, 'SS'],
['2015/11/11', 23, 'SS'], ['2015/11/12', 24, 'SS'], ['2015/11/13', 21, 'SS'],
['2015/11/14', 35, 'SS'], ['2015/11/15', 39, 'SS'], ['2015/11/16', 40, 'SS'],
['2015/11/17', 36, 'SS'], ['2015/11/18', 33, 'SS'], ['2015/11/19', 43, 'SS'],
['2015/11/20', 40, 'SS'], ['2015/11/21', 34, 'SS'], ['2015/11/22', 28, 'SS'],
['2015/11/14', 7, 'QG'], ['2015/11/15', 2, 'QG'], ['2015/11/16', 17, 'QG'],
['2015/11/17', 33, 'QG'], ['2015/11/18', 40, 'QG'], ['2015/11/19', 32, 'QG'],
['2015/11/20', 26, 'QG'], ['2015/11/21', 35, 'QG'], ['2015/11/22', 40, 'QG'],
['2015/11/23', 32, 'QG'], ['2015/11/24', 26, 'QG'], ['2015/11/25', 22, 'QG'],
['2015/11/26', 16, 'QG'], ['2015/11/27', 22, 'QG'], ['2015/11/28', 10, 'QG'],
['2015/11/08', 10, 'SY'], ['2015/11/09', 15, 'SY'], ['2015/11/10', 35, 'SY'],
['2015/11/11', 38, 'SY'], ['2015/11/12', 22, 'SY'], ['2015/11/13', 16, 'SY'],
['2015/11/14', 7, 'SY'], ['2015/11/15', 2, 'SY'], ['2015/11/16', 17, 'SY'],
['2015/11/17', 33, 'SY'], ['2015/11/18', 40, 'SY'], ['2015/11/19', 32, 'SY'],
['2015/11/20', 26, 'SY'], ['2015/11/21', 35, 'SY'], ['2015/11/22', 4, 'SY'],
['2015/11/23', 32, 'SY'], ['2015/11/24', 26, 'SY'], ['2015/11/25', 22, 'SY'],
['2015/11/26', 16, 'SY'], ['2015/11/27', 22, 'SY'], ['2015/11/28', 10, 'SY'],
['2015/11/08', 10, 'DD'], ['2015/11/09', 15, 'DD'], ['2015/11/10', 35, 'DD'],
['2015/11/11', 38, 'DD'], ['2015/11/12', 22, 'DD'], ['2015/11/13', 16, 'DD'],
['2015/11/14', 7, 'DD'], ['2015/11/15', 2, 'DD'], ['2015/11/16', 17, 'DD'],
['2015/11/17', 33, 'DD'], ['2015/11/18', 4, 'DD'], ['2015/11/19', 32, 'DD'],
['2015/11/20', 26, 'DD'], ['2015/11/21', 35, 'DD'], ['2015/11/22', 40, 'DD'],
['2015/11/23', 32, 'DD'], ['2015/11/24', 26, 'DD'], ['2015/11/25', 22, 'DD']
]
tr = ThemeRiver("主题河流图示例图")
tr.add(['DQ', 'TY', 'SS', 'QG', 'SY', 'DD'], data, is_label_show=True)
tr
Out[9]:
In [10]:
from pyecharts import WordCloud
name = [
'Sam S Club', 'Macys', 'Amy Schumer', 'Jurassic World', 'Charter Communications',
'Chick Fil A', 'Planet Fitness', 'Pitch Perfect', 'Express', 'Home', 'Johnny Depp',
'Lena Dunham', 'Lewis Hamilton', 'KXAN', 'Mary Ellen Mark', 'Farrah Abraham',
'Rita Ora', 'Serena Williams', 'NCAA baseball tournament', 'Point Break']
value = [
10000, 6181, 4386, 4055, 2467, 2244, 1898, 1484, 1112,
965, 847, 582, 555, 550, 462, 366, 360, 282, 273, 265]
wordcloud = WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[20, 100])
wordcloud
Out[10]:
In [11]:
from pyecharts import Graph
nodes = [{"name": "结点1", "symbolSize": 10},
{"name": "结点2", "symbolSize": 10},
{"name": "结点3", "symbolSize": 10},
{"name": "结点4", "symbolSize": 40},
{"name": "结点5", "symbolSize": 10},
{"name": "结点6", "symbolSize": 10},
{"name": "结点7", "symbolSize": 10},
{"name": "结点8", "symbolSize": 10}]
links = []
for i in nodes:
for j in nodes:
links.append({"source": i.get('name'), "target": j.get('name')})
graph = Graph("关系图-力引导布局示例")
graph.add("", nodes, links, repulsion=8000)
graph
Out[11]:
In [12]:
from pyecharts import Liquid
liquid = Liquid("水球图示例")
liquid.add("Liquid", [0.6])
liquid
Out[12]:
In [13]:
from pyecharts import Gauge
gauge = Gauge("仪表盘示例")
gauge.add("业务指标", "完成率", 66.66)
gauge
Out[13]:
In [ ]:
查看以上策略详细请 到 supermind量化交易官网查看:经典量化策略基础-配对交易策略