数据分析能力是一项非常重要的能力,尤其是在分析股票数据时,挖掘其中的有用信息是成功的必要因素。而数据可视化可谓是秀数据分析能力的最好方式,本章内容主要介绍python的matplotlib模块,让你的数据分析结果,show出来!
第一篇:Matplotlib绘图实现数据可视化
导语:数据分析能力是一项非常重要的能力,尤其是在分析股票数据时,挖掘其中的有用信息是成功的必要因素。而数据可视化可谓是秀数据分析能力的最好方式,本章内容主要介绍python的matplotlib模块,让你的数据分析结果,show出来!
matplotlib绘图
开始之前,还是学习一个模块导入操作
In [3]:
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
让我们先搬上小白板
In [4]:
fig = plt.figure()
axes = fig.add_axes([0.2, 0.2, 1, 1]) # 左侧间距,底部间距,宽度,高度 (从0到1)
axes
Out[4]:
<matplotlib.axes._axes.Axes at 0x7f3262446dd8>
学习绘制沪深300指数K线图走势,希望同学们结合上面的知识点,学习更多绘图技巧。
绘制代码:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.finance import candlestick2_ohlc
import datetime
data=get_price(['000300.SH'], None, '20171110', '1d', ['open','high','low','close'], True, None, 200, is_panel=0)
data=data['000300.SH']
#时间转化格式
time=data.index
t=[]
for x in time:
x=str(x).split()[0]
x=x.split('-')
x=x[0]+x[1]+x[2]
x=int(x)
t.append(x)
#画图数据
time=t
open1=list(data['open'])
high1=list(data['high'])
low1=list(data['low'])
close1=list(data['close'])
#画图
fig,ax = plt.subplots(figsize = (20,8),facecolor='pink')
fig.subplots_adjust()
plt.xticks()
plt.yticks()
plt.title("沪深300K线走势图")
plt.ylabel("股指")
ticks = ax.set_xticks(range(1,200,40))
labels = ax.set_xticklabels([time[0],time[40],time[80],time[120],time[160]])
candlestick2_ohlc(ax,open1,high1,low1,close1,width=0.6,colorup='red',colordown='green')
#支撑线
plt.plot([75,200],[3316,3954],'g',linewidth=10)
# 红星:回踩1
plt.plot(75, 3316, 'r*', markersize = 40.0,label='趋势线')
plt.annotate(r'二次低位', xy=(75, 3316),
xycoords='data', xytext=(-90, -50),
textcoords='offset points', fontsize=26,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
# 红星:回踩2
plt.plot(140, 3650, 'r*', markersize = 40.0)
plt.annotate(r'止跌,形成趋势线', xy=(140, 3650),
xycoords='data', xytext=(-90, -50),
textcoords='offset points', fontsize=26,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
# 红星:回踩3
plt.plot(172, 3800, 'r*', markersize = 40.0)
plt.annotate(r'回踩趋势线', xy=(172, 3800),
xycoords='data', xytext=(-90, -50),
textcoords='offset points', fontsize=26,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
#MA5
data['ma5']=pd.rolling_mean(data['close'],5)
plt.plot(list(data['ma5']),label='五日均线')
#MA10
data['ma10']=pd.rolling_mean(data['close'],10)
plt.plot(list(data['ma10']),label='十日均线')
#MA20
data['ma20']=pd.rolling_mean(data['close'],20)
plt.plot(list(data['ma20']),label='二十日均线')
#MA30
data['ma30']=pd.rolling_mean(data['close'],30)
plt.plot(list(data['ma30']),label='三十日均线')
#MA60
data['ma60']=pd.rolling_mean(data['close'],60)
plt.plot(list(data['ma60']),label='六十日均线')
plt.legend()
print('沪深300走势图分析')
沪深300走势图分析
查看以上策略详细请 到 supermind量化交易官网查看:数据处理专题1-matplotlib实现数据可视化