
时间序列分析
时间序列分析
山高月小 水落石出
在广袤的空间和无限的时间中,能与你共享同一颗行星和同一段时光,是我莫大的荣幸。
展开
-
State space, 状态空间方法简介
状态空间方法简介原创 2023-01-26 20:37:54 · 645 阅读 · 0 评论 -
两类时间序列的预测方法在原理和适用情况上的简要对比
另一类特征是某种形态的趋势,如线性、sigmoid、指数、对数趋势等。只是在预测期无法获取的feature的维度越多,预测准确度就越受到能获取的features的影响,以及不能获取的features的在训练集和预测期上特征变化程度大小的影响等。多变量的时间序列分析方法,如Prophet,VARMAX,DynamicFactor等,相对于单变量的时序方法,除自身时变规律外,target还受会到不太多的几个重要feature的影响,会使自身序列的特征在某些情况下产生不与时间相关、而与feature相关的变化。原创 2023-01-26 20:10:41 · 867 阅读 · 0 评论 -
对简单指数平滑方法(SES)的讨论——当进行加权的真实值与预测值不同期时
1简单平滑方法中“下一期预测值等于当期真实值与当期预测值的加权值”。如果“下一期预测值等于当期真实值与上一期预测值的加权值”,则将损失掉1/2的真实值信息;即当等号右边进行加权的预测值项比真实值项滞后一期时,则只使用了1/2的真实值信息。当预测值比真实值滞后两期时,只使用了1/4的真实值信息,损失3/4的信息。当预测值比真实值滞后n期时,只使用了(1/2)**n期数的真实值,损失1-(1/2)*...原创 2020-04-22 11:44:34 · 1440 阅读 · 0 评论 -
numpy.random.seed()用法详解
numpy.random.seed()中每一个数字代表一种随机数生成规则,当种子数确定后,每次调用numpy.random下的随机函数时,都会根据该种子数对应的规则,依次生成随机数或随机数组;当第二次指定相同的种子数时,每次调用numpy.random下的随机函数,会依次生成跟上一次指定种子数再调用随机函数时,相同的随机数或随机数组,即依次一一对应;当不指定种子数时,每次调用numpy.random下的随机函数,numpy会随机指定一个种子数,即随机地采用该种子数所对应的规则,生成随机数或随机数组。下面给原创 2020-09-16 11:46:59 · 3385 阅读 · 0 评论 -
平均绝对误差(MAE)、对数平均绝对误差(LMAE)、指数平均绝对误差(EMAE)用法的不同与相似之处
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom scipy.stats import pearsonrfreq = 'D't0 = '2020-01-01'data_length = 7*10num_ts = 3period = 7fit_series, origin_series = [], []time_ticks = np.array(range(data_length))ind原创 2020-09-18 17:54:24 · 13058 阅读 · 0 评论 -
单变量时间序列预测-指数平滑方法专题1:单参数指数平滑方法详解
原创 2018-12-31 20:20:27 · 715 阅读 · 5 评论 -
单变量时间序列预测-指数平滑方法专题2:双参数(趋势性)指数平滑加法模型详解(不带阻尼因子φ)
原创 2018-12-31 20:26:57 · 1069 阅读 · 0 评论 -
单变量时间序列预测-指数平滑方法专题3:双参数(趋势性)指数平滑乘法模型详解(不带阻尼因子φ)
修正:式④中第一项,(Lt / Lt-1)应改为(Lt - Lt-1),因为该项表示由level项算出的从下一点与当前点间的斜率,应用减法而不是除法。原创 2019-01-01 22:12:41 · 741 阅读 · 0 评论 -
单变量时间序列预测-指数平滑方法专题4:三参数(季节性)指数平滑加法模型详解(不带阻尼因子φ)
原创 2019-01-01 22:15:11 · 945 阅读 · 0 评论 -
单变量时间序列预测-指数平滑方法专题5:三参数(季节性)指数平滑乘法模型详解(不带阻尼因子φ)
原创 2019-01-04 20:45:50 · 836 阅读 · 0 评论 -
将不同量级的序列转化为同一量级,及常用的数据缩放的方法
联合多重时间序列本身是一件挑战性十足的事,数据样本的不均衡导致了不同时间序列对于模型的影响程度是不同的。拿商品销售为例,销售数量多一个数量级,商品数量就少一个数量级,每个月卖10个的商品如果有100,000种,每个月卖100个的商品就只有10,000种,每个月卖1000个的商品就只有1000种。(满足幂律分布:y = 1,000,000 / x)这种不均衡样本导致输入值的量级差异,商品A每天销售数百个,商品B每天销售数万个,两个商品共同训练时商品A的信息会被忽略掉,因为相对于B而言,A对神经网络参数的影响太转载 2020-07-14 16:36:57 · 4836 阅读 · 0 评论 -
单变量时间序列预测——误差偏移补偿技术
原创 2019-01-29 17:06:48 · 1122 阅读 · 0 评论 -
单变量时间序列预测-指数平滑方法附篇2:差分的作用
原创 2019-01-07 09:10:30 · 965 阅读 · 0 评论