神经网络多分类中为什么用softmax函数归一化而不用其它归一化方法

直观的解释是为了平衡概率分布,同时避免出现概率为0的情况(使得模型可以不用再做平滑化处理)。
从反向传播的角度推导一波:
softmax函数的形式为:
P ( y = i ) = e W i X ∑ j = 1 N e W j X P ( y = i ) = \frac { e ^ { W _ { i } X } } { \sum _ { j = 1 } ^ { N } e ^ { W _ { j } X } } P(y=i)=j=1NeWjXeWiX目标函数为:
L = − ∑ k t k log ⁡ P ( y = k ) L = - \sum _ { k } t _ { k } \log P ( y = k ) L=ktklogP(y=k) t k t_{k} tk表示目标类为1,其他类为0)

V i = W i X V_{i}=W_{i}X Vi=WiX,则:
∂ L ∂ V i = − t k 1 P ( y = k ) ⋅ ∂ P ( y = k ) ∂ V i = − t k 1 P ( y = k ) ⋅ e W i X ⋅ ∑ j = 1 N e W j X − e W i X ⋅ e W i X ( ∑ j = 1 N e W j X ) 2 = − t k 1 P ( y = k ) ⋅ [ P ( y = k ) − ( P ( y = k ) ) 2 ] = − t k ∗ ( 1 − P ( y = k ) ) \begin{aligned} \frac { \partial L } { \partial V _ { i } } & = - t _ { k } \frac { 1 } { P ( y = k ) } \cdot \frac { \partial P ( y = k ) } { \partial V _ { i } } \\ & = - t _ { k } \frac { 1 } { P ( y = k ) } \cdot \frac { e ^ { W _ { i } X } \cdot \sum _ { j = 1 } ^ { N } e ^ { W _ { j } X } - e ^ { W _ { i } X } \cdot e ^ { W _ { i } X } } { \left( \sum _ { j = 1 } ^ { N } e ^ { W _ { j } X } \right) ^ { 2 } } \\ & = - t _ { k } \frac { 1 } { P ( y = k ) } \cdot \left[ P ( y = k ) - ( P ( y = k ) ) ^ { 2 } \right] \\ & = - t _ { k } * ( 1 - P ( y = k ) ) \end{aligned} ViL=tkP(y=k)1ViP(y=k)=tkP(y=k)1(j=1NeWjX)2eWiXj=1NeWjXeWiXeWiX=tkP(y=k)1[P(y=k)(P(y=k))2]=tk(1P(y=k))
由上式第一个等式可以知道,当我们使用一般的归一化方法时(如min_max归一化),当 P ( y = k ) P(y=k) P(y=k)很小时,梯度将变得很大(梯度爆炸),而softmax函数把它约去了,因此不会出现这个问题。

参考:多类分类下为什么用softmax而不是用其他归一化方法?
如何理解softmax(柔性最大),为什么不用别的归一化的函数?

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值