上一部分对于函数的四大特性进行了讲解,这是属于中学数学的。
但是我们大学中学的是微积分,所以更加关注 导数
和 积分
考微积分:一定是给f’(x),然后研究它的微分(导数) 和 积分
f(x)、f’(x)、f(x)积分的祖孙关系
f(x)求导得到他儿子——f’(x)
f(x)积分得到他爸——f(x)的积分
求导之后函数奇偶性 !互换!
①若f(x)是可导的偶函数,则f’(x)是奇函数
也就是说有这样的条件,立马得到f'(0) = 0
②若f(x)是可导的奇函数,则f’(x)是偶函数
③若f(x)是可导的周期为T的周期函数,则f’(x)也是周期函数,且周期不变(T)
④连续的奇函数的一切原函数都是偶函数(而连续的偶函数!!仅有一个!!原函数是奇函数)
- 连续函数 必有 原函数
简单证明
我们知道如果我们要求f(x)的原函数,将需要使用到积分,即
,其中C是常数
对于F(x) + c
就是我们所求的原函数了,其几何意义就是将F(x)在y轴上移动c个单位
也就是说
- 如果连续的奇函数的原函数是偶函数的话,那么在y轴上移动,依旧关于Y轴对称——全部都是偶函数
- 如果连续的偶函数的原函数是奇函数的话,那么继续在Y轴上移动的话,将**仅仅只有
C=0
**时关于原点对称
⑤连续的偶函数!!仅有一个!!原函数是奇函数
⑥若连续函数f(x)以T为周期,且在[0, T]上积分值为0,则f(x)的一切原函数也都以T为周期
若连续函数f(x)以T为周期 =>(根据结论③) 导函数一定也以T为周期。在这个条件下,如果在[0, T]上积分值不为0,结论不一定成立
⑦!!!若f(x)在(a,b)内可导,且f’(x)有界,则f(x)在(a,b)内有界!!!
问题一:**有导师问:**为什么在函数在有界区间内可导,导函数有界,则函数有界呢?
首先要
理解问题!
有限区间内可导 ===> 有限区间内是连续函数
f’(x) ===> 换一个词:变化率(控制函数值的)
如果f(x)在有界区间内,是可导连续的,且它的变化率也是有界的 =====> 这个函数的任何一个位置的变化率都是有界的
也就是说:如果一个有界函数的变化率是有界的,就可以控制函数一定是有界的
证明
任取x属于(a,b),证|f(x)| <= M
;任取一个顶点x0
则有
所以
加上绝对值
根据 不等式,则可以得到
一定会得到结果**(严格小于
)**
这里f(x0)、(b-a)都是常数,然后f’ 就是f’(x)的特殊点——必然也是有界的
对于导数,我们有
那么对于这个特殊点,我们也有这样的结论
所以,最后能得到
此时右侧都是常数,所以可以简化成M
这里的本质就是通过导函数的有界控制f(x)的有界
这里 只针对有界区间
证明完毕
总结
f’(x) | f(x) | ![]() |
---|---|---|
一定为奇函数 | 偶函数 | 只有一个奇函数![]() |
一定为偶函数 | 奇函数 | 全部都是偶函数 |
依旧以T为周期 | 以T为周期 | 只有在[0, T]上积分值为0,才以T为周期 |
从中间的f(x)列开始开,左右推导