深入理解 ReLU 激活函数及其在深度学习中的应用【激活函数、Sigmoid、Tanh】

ReLU(Rectified Linear Unit)激活函数

ReLU(Rectified Linear Unit)激活函数是一种广泛应用于神经网络中的非线性激活函数。其公式如下:

ReLU ( x ) = max ⁡ ( 0 , x ) \text{ReLU}(x) = \max(0, x) ReLU(x)=max(0,x)

在这里插入图片描述

在图中,你可以看到 ReLU 函数的特点:

  1. x < 0 x < 0 x<0 时, ReLU ( x ) = 0 \text{ReLU}(x) = 0 ReLU(x)=0: 这意味着所有负输入值都被映射为 0,这也是 ReLU 无法处理负值的原因。虽然它能够处理负值,但输出总是 0。
  2. x ≥ 0 x \ge 0 x0 时, ReLU ( x ) = x \text{ReLU}(x) = x ReLU(x)=x: 这意味着正输入值保持不变,正半部分是线性的。

ReLU 激活函数的性质

  1. 简单易计算:ReLU 激活函数的计算非常简单,只需要比较输入值和零的大小,然后取较大值。这使得它在计算上非常高效。

  2. 非线性:尽管 ReLU 看起来像是线性的(因为正半部分是线性的),但它引入了非线性因素。这种非线性有助于神经网络学习复杂的模式。

  3. 稀疏激活:由于 ReLU 函数会将负值变为零,因此它能够使得网络中的一部分神经元输出为零。这种稀疏激活可以提高模型的训练效率和泛化能力。

  4. 梯度消失问题:相较于 sigmoid 和 tanh 激活函数,ReLU 缓解了梯度消失问题。sigmoid 和 tanh 在输入值极大或极小时,梯度会变得非常小,导致训练速度缓慢甚至停滞。而 ReLU 在正值区间梯度始终为1,因此在训练深络时,梯度更容易传递。

性质一:简单易计算

ReLU 激活函数的计算非常简单,只需要比较输入值和零的大小,然后取较大值。这使得它在计算上非常高效:

ReLU ( x ) = max ⁡ ( 0 , x ) \text{ReLU}(x) = \max(0, x) ReLU(x)=max(0,x)

这种简单的计算方式使得 ReLU 在前向传播和反向传播过程中都非常快速,极大地提升了训练速度。与其他需要复杂数学运算的激活函数相比,ReLU 的实现更加高效,特别适合大型神经网络的训练。

性质二:非线性

ReLU 激活函数的公式为:
ReLU ( x ) = max ⁡ ( 0 , x ) \text{ReLU}(x) = \max(0, x) ReLU(x)=max(0,x)

ReLU 看起来像是线性的,因为在正半部分(即 x ≥ 0 x \geq 0 x0 时),输出等于输入,表现为线性关系。然而,ReLU 实际上引入了非线性因素:

  • 在负半部分(即 x < 0 x < 0 x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值