推荐系统的注意力进化:从 Self-Attention 到 Target-Attention

引言

在深度学习和人工智能蓬勃发展的当下,推荐系统已成为众多互联网产品的核心竞争力。而注意力机制,作为推荐系统中的关键技术,正发挥着举足轻重的作用。本文将深入探讨注意力机制及其在推荐系统中的多种变体,如Self - Attention、Target - Attention和双层Attention。

一、注意力机制基础剖析

(一)核心问题与应用本质

注意力机制旨在解决两个关键问题:一是在哪个层面以及如何应用,二是如何获取注意力系数,即由谁产出。其广泛应用的根本原因在于求和操作的普遍性。在众多模型结构中,只要存在向量求和,加权和就有施展的空间。以推荐系统为例,DIN(Deep Interest Network)和DIEN(Deep Interest Evolution Network)将注意力机制应用于用户行为序列建模,目的是获取更优质的用户特征表示。但注意力机制的应用远不止于此,它还能在其他多个环节发挥各种不同的作用。
在这里插入图片描述

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进一步有进一步的欢喜

您的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值