目录
引言
在深度学习和人工智能蓬勃发展的当下,推荐系统已成为众多互联网产品的核心竞争力。而注意力机制,作为推荐系统中的关键技术,正发挥着举足轻重的作用。本文将深入探讨注意力机制及其在推荐系统中的多种变体,如Self - Attention、Target - Attention和双层Attention。
一、注意力机制基础剖析
(一)核心问题与应用本质
注意力机制旨在解决两个关键问题:一是在哪个层面以及如何应用,二是如何获取注意力系数,即由谁产出。其广泛应用的根本原因在于求和操作的普遍性。在众多模型结构中,只要存在向量求和,加权和就有施展的空间。以推荐系统为例,DIN(Deep Interest Network)和DIEN(Deep Interest Evolution Network)将注意力机制应用于用户行为序列建模,目的是获取更优质的用户特征表示。但注意力机制的应用远不止于此,它还能在其他多个环节发挥各种不同的作用。