摘要
针对推荐系统中商品访问序列与页面访问序列的维度异构问题,本文系统研究跨序列Embedding空间对齐技术。通过分析异构序列的特征差异与语义鸿沟,提出基于双塔模型、图神经网络、对比学习及多模态迁移学习的对齐方法,构建从独立编码到跨空间约束的技术体系。实验表明,所提方法显著提升跨维度语义关联建模能力,为解决推荐系统冷启动与稀疏交互问题提供新路径。
一、引言
在电子商务、在线娱乐等领域的推荐系统中,用户行为数据呈现显著的异构序列特征:商品访问序列包含商品属性(类别、价格、文本描述)及交互行为(点击、加购、购买),反映用户对物品的偏好;页面访问序列记录页面功能(订单详情、物流跟踪、客服咨询)及操作路径,体现用户的功能需求与意图演进。两类序列分属“物品属性空间”与“用户意图空间”,特征维度与语义指向差异显著,导致