跨次元牵线:推荐系统中异构序列 Embedding 空间对齐技术



摘要

针对推荐系统中商品访问序列与页面访问序列的维度异构问题,本文系统研究跨序列Embedding空间对齐技术。通过分析异构序列的特征差异与语义鸿沟,提出基于双塔模型、图神经网络、对比学习及多模态迁移学习的对齐方法,构建从独立编码到跨空间约束的技术体系。实验表明,所提方法显著提升跨维度语义关联建模能力,为解决推荐系统冷启动与稀疏交互问题提供新路径。

在这里插入图片描述

一、引言

在电子商务、在线娱乐等领域的推荐系统中,用户行为数据呈现显著的异构序列特征:商品访问序列包含商品属性(类别、价格、文本描述)及交互行为(点击、加购、购买),反映用户对物品的偏好;页面访问序列记录页面功能(订单详情、物流跟踪、客服咨询)及操作路径,体现用户的功能需求与意图演进。两类序列分属“物品属性空间”与“用户意图空间”,特征维度与语义指向差异显著,导致

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进一步有进一步的欢喜

您的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值