Tensoflow - 图像特征的一般处理方法与处理效果

import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;

def distort_color(image, color_ordering=0):
    if(color_ordering == 0):
        image = tf.image.random_brightness(image,max_delta =32. / 255.)
        image = tf.image.random_saturation(image,lower=0.5, upper=1.5)
        image = tf.image.random_hue(image, max_delta=0.2)
        image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
    else:
        image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
        image = tf.image.random_brightness(image, max_delta=32. / 255.)
        image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
        image = tf.image.random_hue(image, max_delta=0.2)

    return tf.clip_by_value(image, 0.0, 1.0)

def preprocess_for_train(image, height, width, bbox):
    # See if there is callout box
    if bbox is None:
        bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
    if image.dtype != tf.float32:
        image = tf.image.convert_image_dtype(image, dtype=tf.float32)

    # Randomly intercepting a block in the image
    bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box(
        tf.shape(image), bounding_boxes=bbox, min_object_covered=0.4)
    bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box(
        tf.shape(image), bounding_boxes=bbox, min_object_covered=0.4)
    distorted_image = tf.slice(image, bbox_begin, bbox_size)

    # Adjust the randomly captured image to the size of the neural network input layer
    distorted_image = tf.image.resize_images(distorted_image, [height, width], method= np.random.randint(4))
    distorted_image = tf.image.random_flip_left_right(distorted_image)
    distorted_image = distort_color(distorted_image, np.random.randint(2))
    return distorted_image

image_raw_data = tf.gfile.FastGFile("Z:/path/121.jpg", "rb").read()
with tf.Session() as sess:
    img_data = tf.image.decode_jpeg(image_raw_data)
    boxes = tf.constant([[[0.05, 0.05, 0.9, 0.7], [0.35, 0.47, 0.5, 0.56]]])
    for i in range(6):
        result = preprocess_for_train(img_data, 299, 299, boxes)
        plt.imshow(result.eval())
        plt.show()

下面是原图

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值